MetaStock,
Developer’s Kit

For MetaStock Solution Providers

Version 9.1

Printed in the USA

All Rights Reserved
Copyright © 1985-2005

Equis International
90 South 400 West
Suite 620

Salt Lake City, UT USA
84101

http://www.equis.com

http://www.equis.com

The MetaStock Developer’s Kit (“Software”) and accompanying documentation (“MetaStock Developer’s Kit
User's Manual”) are licensed, not sold, to you. By opening the sealed package and/or using the Software, you
indicate your acceptance of the Equis Software License Agreement that is included with the original package.
The DownLoader and Smart Charts are trademarks of Equis International. Equis and MetaStock are
registered trademarks of Equis International. Microsoft, MS-DOS, Windows, Windows NT, Win32, Visual
C++, Developer Studio, and Visual Basic are trademarks of Microsoft Corporation. Borland is a registered
trademark of Inprise Corporation. Delphi is a trademark of Inprise Corporation. PowerBASIC is a registered
trademark of PowerBASIC, Inc.

Except as permitted by law, no part of this document may be reproduced or transmitted by any process or
means without the prior written consent of Equis International (Equis). Equis, by publishing this document,
does not guarantee that any information contained herein is and will remain accurate or that use of the
information will ensure correct and faultless operation of the relevant product or service. Equis provides its
products and services as tools to be used by investors who are aware of the risk inherent in securities trading,
not as recommendations to buy or sell. Equis, its agents, affiliates, and employees shall not be held liable to
or through any user for any loss or damage whatsoever resulting from reliance on the information contained

within this document or through the use of Equis products or services.

9/23/05
9 8 7 6 5 4 3 2 1 P

Table of Contents

Introduction

OVEIVIBW ..
Typography Conventions,
SystemRequirements
SEUD . o e
Supported Compilers ...
Installed Files
GettingHelp ...

Modifying the MetaStock User Interface

Introduction
UsingtheEQCuUstUI i
Commandsiiii e
CommandLineSwitches
Errors ..

Formula Organizer Enhancements

Introduction
Using the Formula Organizer toExport
Using the Sdlf-extracting Installation File

DDE Data Interface

OVEIVIBIW .
Background
Implementation i

Interface
Running EgDdeSrv.exe i
SYSEEM TOPIC . o v e et

Examples
Microsoft Excel Example.
SimpleCExample

SUgOEStEd RESOUICES .. .o v it

MetaStock External Functions (MSX)

Introductionci i
MSX DLL Capabilitiescov...
Getting Assistance

OVEIVIBW .« .ottt e e e e e e e e

Function Prototype Sectiont
Initialization Functions
Cdculation Functions

......................... 20

25

MetaStock®

Table of Contents « i

Variable NOtalioNottt e e e 31

INitialization SEIUCLUNESo e et 32
Calculation SITUCKUIESo e e e e 35
Function Argument SETUCLUNESottt e e e e e 38

EXAMPIES . . . 39
Creating an MSX DLL ... e 40

Microsoft Visual C++ 4., 5.0, and 6.0ot ii i 40

Borland C++ BUIlder 4.0o 41

Borland C++ 5.0 . ..o 43

Borland Delphi 3.0, 4.0, and 5.0 i e e e 43

POWErBASIC/DLL 6.0t e e e 44

Naming your DLL and Calculation Functions i, 44
Debugging Your MSX DLL i e e e 45

General ApProach 45

Microsoft Visual C++4.X,5.0, and 6.0 oo 45

Borland C++ BUilder 4.0t e 46

Borland C++ 5.0 ... o 46

Borland Delphi 3.0,4.0,and 5.0t 46

POWErBASIC/DLL 6.0 ... it e e 47
Testing Your DLL With MSXTeStt e 48

StressTesting Your DLL FUNCtions e 52

Automating MSXTest FromYour IDE 54
Testing Your DLL WithMetaStock e 55
Programming GUIdEIINESot e 56

DataStorageand Calculationsttt e 56

Thingsto Remember 59

User Interface Restrictions i 59
TechNote1—-UsingMSFL inanMSX DLL i i 60
MSX INAEX . . o ettt 61

Sample DLL Programs 63
O EXAMPIE oo 63
Delphi Pascal Example 67
PowerBASIC/DLL EXampleo 71
REFEIENCES ... e e 74

MetaStock File Library (MSFL) 75
INtrOdUCHION e 75

What SNEW .. 75
Application Integration e 75

VisUal BaSiC 76

DE PN . 76

POWEIBA S C .. e e 76
GeEtliNg HElD . . .o 77
OV IV BV . . e e 77

SECUNEIES . o ottt 77

PricE Data i 77

L0 01010 (== 78

MU -USEr SUPPOI . .t e e 78

Resarved File Nameso 79

ii « Table of Contents MetaStock®

CD-ROM SUPPOIT .o e e e e 79

DAl A TY PSS .ottt e 79
oMMt S . . . 79
TP .ottt 81
Variable Notation e e 81
SITUCKUNES . . o e e e e e 81

Usingthe Library 86
OULIING . . e e e e e 86
INitializZation e e e 87
DIreCtory OPENING . .ot ot 87
SeCUrity LOCKING ... i e e e e 87
Data Assumptionsand Requirementsttt 88
Error Handling o 88

FUNCLIONS . .o 88
ReEUNN ValUES . . . 88
Listed By NamMeo 89
LiSted BY T P . v ottt ittt e e 20
REfEIENCE 91

Messages and ErrOrSo 131
Error Codes ... e e 131
MESSAgE COUESttt 136

Change ReCOrd 137

MSFL INAEX . .ot 139

Index 141

MetaStock® Table of Contents e iii

iv « Table of Contents MetaStock®

Introduction

Overview

The MetaStock® Devel oper’s Kit includes applications and documentation for tools
used to customize MetaStock and access MetaStock data.

The Equis® Custom User Interface Utility allows developersto add their own
commands to the MetaStock Custom Toolbar, Tools menu and Help menu.

The MetaStock Formula Organizer Enhancements are installed with this toolkit.
Documentation for these enhancementsis included in this manual.

The DDE Server isprovided with MetaStock Professional (versions 7.0 and later), and
MetaStock FX. Full documentation for this feature isincluded in this manual.

The MetaStock External Function (M SX) Application Programming Interface
(API) allows software developers to dynamically add externally defined functionsto
the MetaStock Formula Language. These functions can be called from Custom
Indicators, Explorations, System Tests, and Experts. Thisfeatureisavailablein
MetaStock, MetaStock Professional (versions 7.0 and later), as well as MetaStock FX.
The MetaStock File Library (MSFL) Application Programming I nterface (API)
provides devel opers with the tools necessary to integrate applications with the
MetaStock data format.

This manual contains the instructions necessary to implement each of these
applications. It assumes that the devel oper is an experienced programmer familiar with
security price data and with creating and calling dynamic link libraries.

MetaStock®

Introduction « 1

Typography Conventions

The following typographic conventions are used throughout this manual:

Typeface Significance
Monospaced type Program code.
Italic Monospace | Filenames
Sans Serif Text in the program interface
(Bold indicates buttons)
ALL CAPS Mnemonics such as error codes, messages and defined values.
Italics Function names, variable names, structure names or identifiers.

(Thistypeis aso used to emphasize certain words.)

System Requirements

e Windows NT 4.0 (Service Pack 6aor higher)/
Windows 2000 (Service Pack 1 or higher)/
Windows XP

* 166 MHz Pentium CPU
* 32 MB of RAM
* 50 MB of free hard disk space

Setup

1. Insert the Program CD into your drive. The setup program should start automatically.
If the auto-run feature of Windows isn't enabled on your system,

a. Click Start and choose Run.

b. Type“D:\SETUP.EXE” in the Open box and click OK.
(“D” represents the letter assigned to your CD-ROM drive. If your driveis
assigned a different letter, useit instead of “D”.)
2. Follow the on-screen instructions. Y ou will be prompted to enter a Setup Key.
Y our Setup Key isfound on the back of the CD case.

Supported Compilers
The MetaStock Developer’ s Kit supports the following compilers:
« Borland® C++ Builder (Versions 5.0 and above)
« Borland® Del phi™ (Versions 3, 4 and 5)
e GCC295.2
e Microsoft Visual C++™ (Versions 4.0 and above)
« Microsoft Visual Basic™ 6.0
« PowerBASIC®/DLL Version 6

2 « Introduction MetaStock®

Installed Files

After installing, the following directories and files should exist in the installation
directory. Below is a short description of each file and directory.

Directory/File

Description

ul Contains eqcustui . exe (the Equis Custom User Interface application) and
ReadMe . Doc which contains information provided since the printing of this manual.
MSFL\DATA This directory contains sample MetaStock price data.
MSFL\DLL
msFl191.dl1 The release version of the MSFL DLL.
msf191d.dl1 The debug version of the MSFL DLL.
MSFL\DEF
msfl.def The module definition file for the MSFL DLLsS
MSFL\ INCLUDE
msfl._h The C header file containing the MSFL defines, structures and function prototypes.
msflutil.h The prototypes for asmall collection of helpful C++ functions.
msflutil.cpp A small collection of helpful C++ functions.
msFfl .bas The Microsoft Visual Basic module containing the MSFL function and type declares.
msflutil .bas A Microsoft Visual Basic module containing helpful routines.
msfl .pas The Delphi unit containing the MSFL constants, records and function declarations.
msFl.inc The PowerBASIC module containing the M SFL function and type declares.
MSFL\L IB\BC
msfI91.1ib Therelease link library for Borland C++ Builder 4 compiler.
msF191d. lib The debug link library for Borland C++ Builder 4 compiler.
MSFL\LIB\GCC
msFI91.1ib The release link library for the gcc 2.9.5.2 compiler.
msf191d. lib The debug link library for the gcc 2.9.5.2 compiler.
MSFL\LIB\VC
msFI91.1ib Therelease link library for Microsoft Visual C++ 6.0 compiler.
msf191d. lib The debug link library for Microsoft Visual C++ 6.0 compiler.
MSFL\SAMPLES\BC The sample application for Borland C++ Builder 4 compiler.

MSFL\SAMPLES\C-CONSOLE

A C/C++ sample console application for the Borland C++ Builder 4, gcc 2.9.5.2, and
Microsoft Visual C++ 6.0 compilers.

MSFL\SAMPLES\DELPHI The sample application for Borland Delphi 4.

MSFL\SAMPLES\PB The sample application for PowerBASIC/DLL 6.0.

MSFL\SAMPLES\VB The sample application for Microsoft Visua Basic 6.0.

MSFL\SAMPLES\VC The sample application for the Microsoft Visual C++ 6.0 compiler.

MSX ContainsMSXTest . exe, sample DLLs, sample data, and ReadMe . Doc containing
additiond information provided since the printing of this manual.

MSX\C Samples and templates for Microsoft Visual C++ (Versions 4.0 and above), and
Borland C++ (Versions 5.0 and above).

MSX\DELPHI Samples and templates for Borland Delphi Versions 3, 4 and 5.

MSX\PBasic Samples and templates for PowerBASIC/DLL Version 6.

MetaStock® Introduction « 3

Getting Help

Due to the complexity of the programming languages and development environments,
Equis International is only able to provide minimal technical support for the MetaStock
Developer’s Kit. We will help you in understanding how to use the MetaStock
Developer’s Kit, but we cannot aid in writing or debugging your application or DLL.
Thismanual explainsthe use of the MetaStock Developer’ s Kit, but not the programming
techniques required to effectively useit. The sample applications can be a good source of
information aswell as an excellent starting point.

CAUTION:

Failure to follow the programming guidelines may result in the corruption of other
MetaStock variables and/or loss of the user’s data. Equis International shall not be
responsible for any damages of any type caused by the MetaStock Developer’ s Kit.

Equis International is committed to enhancing the MetaStock Developer’sKit. If you
are having a problem directly related to the Developer’ s Kit, you may contact Equis by
mail or by the Internet.

By Mail

EquisInternational

MS Dev Kit Support

90 South 400 West, Suite 620
Salt Lake City, UT 84101

By Internet
msdevkit @equis.com

When contacting Equis by Internet, please include the module you are working with in
the subject line of your e-mail message (For example, MSX, MSFL, etc.).

4 « |ntroduction

MetaStock®

Modifying the MetaStock User Interface

Introduction
EgCustUI isautility that can be used to customize the user interface in MetaStock.
Specificaly, it can be used to add and del ete buttons on the M etaStock Custom toolbar.
It can also be used to add and delete menu items in the reserved section of either the
MetaStock Tools menu or the MetaStock Help menu.

Restrictions

Please note that the utility cannot be used to modify any other MetaStock toolbar or
menu other than those listed above. It should also be noted that MetaStock must be
installed on the user's machine before using the EqCustUI utility. If thisis not done
then the utility will not be able to locate the files to modify.

Using the EqCustUI

EqCustUI uses the command line for al input. Other than error messages, thereis no
user interface associated with this utility. This makes the utility useful for those third-
party developers that use DOS batch files to install their MetaStock add-on products.
For those third-party developers that use an installation program, please use the
Windows API function CreateProcess to launch the EqCustUI utility.

IMPORTANT: EqCustUI locks the MetaStock files that it modifies while it is modifying them.
For this reason, you must wait for the utility to finish its processing and exit before
creating another instance. Failure to do so will produce undesirable results, as the
second instance of EqCustUI will not be able to access the files it needs.

MetaStock® Modifying the MetaStock User Interface ¢ 5

BOOL
STARTUPINFO

The following is a C/C++ example of how to use the CreateProcess function to
modify the MetaStock user interface.

bProcessCreated;
si;

PROCESS_INFORMATION pi;

si.cb

si . IpReserved

si.IpTitle
si.dwFlags

si .wShowWindow
si .cbReserved2
si . IpReserved2

sizeof (si);

NULL;

NULL;
STARTF_USESHOWWINDOW;
SW_SHOWNORMAL ;

0;

NULL;

// Spawn EqCustUl to modify the MetaStock user interface
bProcessCreated = CreateProcess (

_T("c:\\source\\equis apps\\egcustui\\debug\\eqcustui.exe™),
_T(C'EqCustUl .exe \"Toolbar.Add(www.equis.com, Equis on the
web)\'"'"),

NULL,

NULL,

FALSE,

NORMAL_PRIORITY_CLASS,

NULL,

NULL,

&si,

&pi);

// Wait for EqCustUl to finish
iT (bProcessCreated)
WaitForSingleObject (pi.hProcess, 5000);

Note: The command line must be enclosed in quotes (** **) if spaces are used. While thisis

optional if there are no spaces in the command line, it is recommended that the command
line always be enclosed in quotes to avoid problems in the future.

The MetaStock user interface is modified by specifying an object.command pair on the
utility's command line. The keywords Toolbar and Menu are the only objects accepted
by the EqCustUI utility. The Toolbar object accepts the commands Add and Delete.
The Menu object accepts the commands AddItem, Deleteltem, AddPopupltem, and
DeletePopupltem. Objects and commands must be separated by a period. For example,
Toolbar.AddItemis valid whereas Toolbar Additemis not. The EqCustUI utility does
not allow the third-party developer to specify or change the order of buttons and menu
items.

IMPORTANT: The EqCustUI utility is not copied to the end user's computer when they install

MetaStock. For this reason the EqCustUI utility must be included with each third-party
solution that modifies the MetaStock user interface. Failure to do so will cause the third-
party setup program to fail asit will not be able to modify the MetaStock user interface.
It should also be noted that if the EQCustUI utility istemporarily copied to the end user's
hard drive, it must be deleted when the third-party setup program finishes.

6 < Modifying the MetaStock User Interface MetaStock ®

Commands

Note:

Toolbar.Add

Toolbar.Add(<Command>,<Tip>[,<Parameters>])

Parameters

Command Specifies the action to be associated with the new button. Any syntax that
can be specified in the Windows “Run” dialog (Start> Run) can be
specified here. Thisincludes executable files, internet URLS, and
documents that are associated with a valid program on the system.

Tip Specifies the status bar prompt and tooltip that will be associated with the
new button. The pipe character (|) can be used to specify separate
strings for the status bar prompt and the tooltip. In this case, the format of
this parameter is
"'status bar prompt string”|"tooltip string".

If this parameter does not contain the pipe character then the same string
will be used for both the status bar prompt and the tooltip.

Parameters Specifiesthe parameter list that will be passed to the executable file when
the user selectsthe new toolbar button. The[and] characters specify that
this parameter is optional. These characters should not be used literally on
the EqCustUI utility command line. For example,

Toolbar .Add(<Command>,<Tip>[,<Parameters>]) can be
interpreted as Toolbar . Add(<Command>, <Tip>) or

Toolbar .Add(<Command>,<Tip>,<Parameters>).

Either method isvalid.

Remarks

» This adds a button to the MetaStock Custom toolbar.

« The EqCustUI utility always adds the button to the MetaStock toolbar using the icon
associated with Command.

» Thereisno method for the devel oper to specify another icon to use, or to specify the
order in which the button is placed on the custom toolbar.

This command does not modify existing buttons as duplicates are ignored. To modify a
button the developer must first delete it and then add it back in with the appropriate changes.

Example
EqCustUl "'Toolbar .Add(www.mycompany.com,Browse our web
site|mycompany.com)*
Or
EqCustUl "'Toolbar.Add(dlwin.exe,Express download,/express)"

MetaStock®

Modifying the MetaStock User Interface « 7

Toolbar.Delete

Toolbar .Delete(<Command>)

Parameters

Command Specifies the action (executable file, internet URL, document, etc.) that is
associated with the button to del ete.

Remarks

 Thisremoves a button from the MetaStock Custom toolbar.

» Thetoolbar is searched until a button isfound that is associated with thisfile.

« If abuttonisfound it will be deleted.

IMPORTANT: Third-party developers should only delete the buttons they have created on the Custom
toolbar. A third-party developer should never delete another devel oper's button on the
toolbar. Doing so is aviolation of the license agreement.

Example
EqCustUl ""Toolbar .Delete(www.mycompany.com)""

Menu.Addltem

Menu .Addltem(<Location>,<Menu>,<Command>)

Parameters

Location Specifiesthe placement of the new menu item. Please note that M etaStock
uses two different and distinct menus. The first menu (Main) is used when
achart is not opened on the screen, whereas the second menu (Chart) is
used when a chart is opened on the screen. For this reason menu items
must be added to both the Main menu and the Chart menu to be visible at
all times.

The following are the different locations avail able.

Placement Location (The menu is located:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools | Onthe Tools menu when achart is opened.

Chart-Help On the Help menu when a chart is opened.

Menu Specifies the string to be placed on the menu.

Command Specifiesthe action that is associated with this menu item. Any syntax that
can be specified in the Windows run dialog (Start> Run) can be specified
here. Thisincludes executable files, internet URLS, and documents that
are associated with avalid program on the system.

MetaStock supports severa predefined literals that have special meaning.
These literals will be replaced with the appropriate value when the user
selects the menu item. The greater-than and less-than (< >) characters
must be included.

8 « Modifying the MetaStock User Interface MetaStock ®

The following ar

e the literals supported by MetaStock.

Literal

Description

<symbol>

Thisliteral isreplaced with the symbol name of the security
on the active chart. Thisliteral isonly valid when achart is
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<name>

Thislitera isreplaced with the actual name of the security
on the active chart. Thisliteral isonly valid when achart is
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<periodicity>

Thislitera isreplaced with the periodicity of the security
on the active chart. Please note that thisis the periodicity of
the underlying security as it was created with the MSFL,
not the current periodicity that the user has compressed to.
Valid valuesfor thislitera are Intraday, Daily, \Weekly,
Monthly, Quarterly, and Yearly. Thisliteral isonly valid
when a chart is opened in MetaStock. Therefore, the
Location parameter must be Chart-Tools or Chart-Help.

Remarks

* Adds amenu item to the reserved section of either the MetaStock Tools menu or the

MetaStock Help menu.

» Asof thiswriting, the reserved section on the Tools menu is directly above
Default colors and styles, whereas on the Help menu it is directly above
About MetaStock. The reserved sections are subject to change at any time.
 Thereisno method for the developer to specify the order in which the menuitemis
placed in the specified reserved section.

* MetaStock must be restarted for menu modifications to take effect.

Note: This command does not modify
must first delete it and then add

Example

existing menu items. To modify a menu item the developer
it back in with the appropriate changes.

EqCustUl ""Menu.Addltem(Main-Help,My company on the
web , www . mycompany .com)**

Menu.Deleteltem

Menu.Deleteltem(<Location>,<Menu>,<Command>)

Parameters

Location Specifiesthe placement of the menu item.
Please note that MetaStock uses two different and distinct menus.
The first menu (Main) is used when a chart is not opened on the screen,

whereas the seco
screen.

nd menu (Chart) is used when a chart is opened on the

The following are the different locations available.

Placement

Location (The menuislocated:)

Main-Tools

On the Tools menu when no chart is opened.

Main-Help

On the Help menu when no chart is opened.

Chart-Tools

On the Tools menu when a chart is opened.

Chart-Help

On the Help menu when a chart is opened.

MetaStock®

Modifying the MetaStock User Interface « 9

Menu Specifies the string of the item that is to be deleted.
Command Specifies the action that is associated with the menu item to be del eted.

Remarks

* Thisremoves amenu item from the reserved section of either the MetaStock Tools
menu or the MetaStock Help menu.

« All three command parameters must be specified to be able to delete a menu item.
* MetaStock must be restarted for menu modifications to take effect.

IMPORTANT: Third-party developers should only delete the menu items that they have added.
A third-party developer should never delete another devel oper's menu item.
Doing so isaviolation of the license agreement.

Example

EqCustUl *'Menu.Deleteltem(Main-Help,My company on the
web , www_mycompany .com)*

Menu.AddPopupltem

Menu .AddPopupltem(<Location>,<ParentMenu>,<Menu>,<Command>)

Parameters

Location Specifies the placement of the new menu item. Please note that M etaStock
uses two different and distinct menus. The first menu (Main) is used when
achart is not opened on the screen, whereas the second menu (Chart) is
used when a chart is opened on the screen. For this reason menu items
must be added to both the Main menu and the Chart menu to be visible at
all times.

The following are the different locations available.

Placement Location (The menu islocated:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools | Onthe Tools menu when achart is opened.
Chart-Help On the Help menu when a chart is opened.

ParentMenu Specifies the name of the parent menu item. Multiple levels can be nested
by using the forward slash (/) character. However, parent menus may not
begin or end with the / separator character. For example,

“My company/Support” would be a valid parent menu.

Menu Specifies the string to be placed on the menu.

Command Specifiesthe action that is associated with this menu item. Any syntax that
can be specified in the Windows run dialog (Start> Run) can be specified
here. This includes executable files, internet URLS, and documents that
are associated with avalid program on the system. MetaStock supports
severa predefined literalsthat have special meaning. These literalswill be
replaced with the appropriate value when the user selects the menu item.
The greater-than and less-than (< >) characters must be included.

10 « Modifying the MetaStock User Interface MetaStock ®

Note:

The following are the literals supported by MetaStock.

Literal Description

<symbol> Thisliteral is replaced with the symbol name of the
security on the active chart. Thisliteral isonly valid when a
chart is opened in MetaStock. Therefore, the Location
parameter must be Chart-Tools or Chart-Help.

<name> Thisliteral isreplaced with the actual name of the security

on the active chart. Thisliteral isonly valid when achartis
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<periodicity>

Thisliteral isreplaced with the periodicity of the security
on the active chart. Please note that thisis the periodicity of
the underlying security as it was created with the MSFL,
not the current periodicity that the user has compressed to.
Valid valuesfor thisliteral are Intraday, Daily, Weekly,
Monthly, Quarterly, and Yearly. Thisliteral isonly valid
when achart is opened in MetaStock. Therefore, the
Location parameter must be Chart-Tools or Chart-Help.

Remarks
This creates a popup (nested) menu and its associated menu item(s).
This command will create the parent menu item if it does not aready exist.

As of thiswriting, the reserved section on the Tools menu is directly above

Default colors and styles, whereas on the Help menu it is directly above

About MetaStock. The reserved sections are subject to change at any time.

There is no method for the developer to specify the order in which the menu itemis
placed in the specified reserved section.

MetaStock must be restarted for menu modifications to take effect.

This command does not modify existing menu items. To modify a menu item the developer
must first delete it and then add it back in with the appropriate changes.

Example
EqCustUl *'Menu.AddPopupltem(Main-Help,My company,My company

on the web,www

-mycompany.com)""

Menu.DeletePopupltem

Menu.DeletePopupltem(<Location>,<ParentMenu>,<Menu>

,<Command>)

Parameters

Location

Specifies the placement of the menu item.

Please note that MetaStock uses two different and distinct menus.
Thefirst menu (Main) is used when a chart is not opened on the screen,
whereas the second menu (Chart) is used when a chart is opened on the

screen.

The following are the different locations available.

Placement

Location (The menu is located:)

Main-Tools

On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.
Chart-Tools | Onthe Tools menu when achart is opened.
Chart-Help On the Help menu when achart is opened.

MetaStock®

Modifying the MetaStock User Interface « 11

ParentMenu Specifies the name of the parent menu item. Multiple levels can be nested
by using the forward slash (/) character. However, parent menus may not
begin or end with the / separator character. For example,

“My company/Support” would be avalid parent menu; while
“My company/Support/” is not valid.
Menu Specifiesthe string of theitem that isto be deleted.
Command Specifies the action that is associated with the menu item to be deleted

Remarks

« Removes a menu from a popup (nested) menu.

« If the popup menu is empty after the deletion it will be removed.

* All four command parameters must be specified to be able to delete a menu item.
» MetaStock must be restarted for menu modifications to take effect.

IMPORTANT:

Third-party developers should only delete the menu items that they have added.
A third-party developer should never delete another devel oper's menu item.
Doing so isaviolation of the license agreement.

Example

EqCustUl "'Menu.DeletePopupltem(Main-Help,My company,My
company on the web,www.mycompany.com)"

Command Line Switches

Thefollowing isalist of command line switches that the EqCustUI utility supports.
/h Help. Displaysahelp screen. No other switches or commands are processed.
/q Quiet. Preventsthe EqCustUI utility from displaying error messages.

Errors

The Windows API function GetExitCodeProcess can be used to retrieve the EQCustUI
exit code. For batch files, the ERRORLEVEL command can be used to change
program flow.

Thefollowing isalist of possible exit codes that can be returned by EqCustUI.

Returned Value |Meaning

0 The operation was successful. No error was encountered.

1 Cannot open the custom toolbar storage file. It is either locked or
MetaStock is not installed.

2 Cannot open the custom menu storage file. It is either locked or

MetaStock is not installed.

Out of memory.
Cannot add the button to the toolbar.
Cannot del ete the button from the toolbar.

Cannot add menu item.

Cannot delete menu item.

3
4
5
6 Cannot find the button on the toolbar.
7
8
9

Cannot create popup (nested) menu.

10 Cannot open popup (nested) menu.

11 Cannot delete popup (nested) menu.

12 Cannot open the specified program, document, or internet resource.
13 Cannot read afile.

14 Cannot write to afile.

12 + Modifying the MetaStock User Interface MetaStock ®

Formula Organizer Enhancements

Introduction

The Formula Organizer is awizard (included with MetaStock versions 6.5 and above)
that allows you to import and export any MetaStock formula-based filesincluding
custom indicators, system tests, explorations, and experts. For example, you can usethe
Formula Organizer to import a set of add-on custom indicators, experts, etc. purchased
from athird-party. You could also create aset of add-on indicators, explorations, and so
on to distribute to your colleagues, and even protect your formulas with a password.

Enhancements to the Formula Organizer to import and export DLLs created with the
MetaStock External Functions APl (MSX) were installed with this toolkit.
Enhancements were also added to facilitate the distribution of formulas by providing
copyright information, importing and exporting of templates, and creation of
self-extracting installation files.

IMPORTANT: These enhancements are only available with the Formula Organizer included with
MetaStock version 7.0 (any version) and above. Y ou must have thistoolkit and
MetaStock 7.0 or above installed to export MSX DLLs and templates.

If aMetaStock user that has not installed this toolkit attempts to export formulas that
call MSX DLLs, the user will be warned that anyone using these formulas must already
havethe DLLsinstalled. Importing MSX DLLsand templatesis available to any user
of MetaStock 7.0 or above. Importing MSX DLLs and templates does not require this
toolkit, but does require MetaStock (any version) 7.0 or above.
The following table indicates the capabilities of the currently released versions of
Formula Organizer and the Developer’s Kit.
. . without | with
Formula Organizer Function MDK MDK
Import custom indicators v v
Import system tests v v
Import explorations v v
Import experts v v
Import templates v v
Import MSX DLLs v v
Export custom indicators v v
Export system tests v v
Export explorations v v
Export experts v v
Option to include linked multimedia files with exported experts v v
Export Templates v
Export MSX DLLs v
Create self-extracting installs v
MetaStock® Formula Organizer Enhancements « 13

Formula Organizer Function Wli\;g?:t ,\\’AVSE
Password protect exported components v v
Password protect self-extracting install v
Copyright notice on self-extracting install v

CAUTION: Formula Organizer is not backward compatible, e.g. tools exported by the Formula

Organizer cannot be imported by an earlier version of the Formula Organizer.

For example, if you export using 7.03, a user with 7.01 cannot import your file. If you
export using 7.2, no user with 7.0x can import your file. The self-extracting installer will
not launch any version of Formula Organizer previousto 7.0.

Using the Formula Organizer to Export
When the Developer’ s Kit isinstalled with MetaStock 7.0 or above, additional dialogs

are included in the Formula Organizer's export process. Y ou will be prompted to:
» Choose formulas to export,

» Choose templates to export,

» Choose DLLsto export,

« Include a copyright information text file,

 Create a self-extracting installation file,

 Password-protect the formulas, and

* Password-protect the self-extracting installation file.

To Export using the Formula Organizer
1. Start any one of MetaStock's formulatools (Indicator Builder, System Tester,
The Explorer, Expert Advisor).
For example, select Tools> Indicator Builder to start the Indicator Builder.

#MetaStock Professional

P Spstem Tester... Chl+T
@k The Explorer... Clrl+E

tetaStock Updates
IJpdate Symbol Databasze...

Default Colors & Shyles...

Options...

2. Click the Organizer button.

rganizer.. .

=l

14 + Formula Organizer Enhancements

Choose Indicator Builder

MetaStock®

3. Choose Export formula files, then click Next.

10.

Formula Organizer Wizard

Wwhat would you like thiz Wizard to do?
 Import farmula files
Lol

Import or export Cuztom
Indicatars, System
Tests, Explorations,
Experts, Templates, &
b5 DLLz. Optional
zelf-extracting install
created for exports.

< Bach I Mest > I Cancel | Help |

Choose the Indicators, System Tests, Explorations, Experts, Templates, and DLLsto
Export. After choosing each type of tool to export, click Next to go to the next selection
dialog.

To create a self-extracting install ation file, check Create Self-Extracting Installation.
In this example, the name of thisfile will be FOSetup.exe, but you may change it
after the export processis complete.

Create Self-Extracting Install

¥ Create SelE stracting |nstaliation

You may attach a copyright text file that will be
dizplayed by Farmula Organizer when your
zelf-extracting install is run.

Leave this blank if you don't want to attach a
o

self-extracting install— Fje.)
is an executable file =

that contains all the B
components you are e | et
exporting. hen run, it _,Type text file name
extracts itz contents

and s Formula here.

Organizer.

< Back I Mest > I Cancel | Help |

To include copyright information, or anything else that you would like to be displayed
when the installation file is run, type the file name of the text file containing this
information in the box shown above. Thisinformation is displayed after the extraction
and before the Formula Organizer begins importing the formulas. The user is forced to
click OK to proceed from the dialog displaying thistext file.

Click the Edit button to launch your default text editor. Y ou may edit an existing file, or
create anew text file to include.

Click Next to continue the export process.

Type the folder where you want the installation file (or formulafilesif you did not
choose to create an installation fil€) to be created. Click Next to continue.

Enter a password for the exported items, if desired.

Users will be prompted for the formula password any time they attempt to view the
formulafor any of the tools you included in this export (for example, if a user selects
Tools> Indicator Builder, and then selects one of the indicators you exported,

the password prompt will appear when he or she clicks Edit).

MetaStock®

Formula Organizer Enhancements « 15

Note: If you created a self-extracting installation file, you may enter a password for thefilein this
dialog. If you did not choose to create a self-extracting installation file, this option will not
be displayed in the dialog. The user will be prompted for the installation password
immediately after the installation fileisrun.

Password Protect

Enter a password that will be required for uzers to edit the
exparted items (D ptional]:

—

Enter it again far verification:

Specify a password Enter a password that the Self-E stracting |nstall will require
which will be required 0 enable extraction [Optional):

to edit the exported I
itemns. |If pou do nat
want to password Enter the Seli-Extracting password again for verification:

pratect them, leave the
pazzword field blank. I

< Back I Finizh I Cancel Help

11. Click Finish to complete the export process.

Using the Self-extracting Installation File

The self-extracting installation file that you created (FOSetup . exe) contains al the
files that were exported. Y ou may rename FOSetup . exe to any other name you wish
(e.g., SuperTools.exe) using Windows Explorer. Be sureto leave the .exe extension.

When the user runs FOSetup -exe, atemporary folder is created, the files are extracted
toit, and the user’s copy of the Formula Organizer (FormOrg - exe) will be executed to
import the files. If the self-extractor detects multiple versions of FormOrg.exe it will
reguire the user to select the desired version to run. After the import, the temporary
folder will be removed.

If any MSX DLLsareto beimported, they are copied to atemporary folder called
“~MSXIMPORTDLLS~" located under the user’s“External Function DLLS’ folder.

If MetaStock is running when FormOrg is finishing, FormOrg sends a signal to
MetaStock to load the new DLLs. Otherwise, when MetaStock starts up it checks for
MSX DLLsinthisfolder and, if any exist, they are moved to the

“Externa Function DLLS’ folder.

The password that can be applied to a self-extracting install allows you to distribute
your toolsviaaweb page or email. The compressed tools are encrypted and require the
correct password to be extracted.

Installing the self-extracting installation file

Installation of the self-extracting installation file follows theis process. Once the process
is started, only steps 2 and 5 require user interaction.
1. Thesystem issearched for formorg.exe. If multiple versions are detected, the user is
prompted to choose one.
2. If theinstallation file has been password protected, the user is prompted to enter the
password.
A temporary folder is created to hold the installation files.
Theinstallation files are unzipped into the temporary folders.
5. If acopyright file was included, the contents of that file are displayed. The user must
click the OK button to proceed.
6. Theformulafiles areimported by formorg.exe.
7. Thetemporary folders and their contents are removed.

> w

16 + Formula Organizer Enhancements MetaStock®

DDE Data Interface

Overview

The Equis Dynamic Data Exchange Server (EqDdeSrv .exe) isinstalled as part of
MetaStock Professional version 7.0 and above. EqDdeSrv forms a general interface
bridge between the Equis Data Server, EgDatSrv.exe, and user applications. It allows
any DDE client to receive security price information as a single snapshot (cold-link) or
to receive price data changes as they occur (hot-link). One of the most common and
easy-to-use DDE clients available to most users is a spreadsheet, such as Microsoft
Excel. Programmers may choose to write their own DDE clientsto interface with
EgDdeSrv in order to perform specialized functions. Applications that use EQDdeSrv
may be distributed to any MetaStock Professional user.

IMPORTANT:

Never distribute EqDdeSrv . exe with your application. Your user will already have the
correct version for his data vendor.

Background

Dynamic Data Exchange, or DDE, is a communication protocol, based on the
messaging system built into Windows, which allows the transmission of messages
between programs. A conversation is established between two programs, which then
post messages to each other. In all cases, one of the programsisthe server and the other
isthe client. The DDE server program has access to data that it can make available to
the DDE client program. All DDE conversations are defined by a set of three character
strings:

“Service” (also called “Application™), “Topic”, and “ltem” strings

The “Service” string is generally the DDE server file name, without the extension.
The vendor who wrote the DDE server defines the legal values for the “Topic” and
“Item” strings. The DDE client obtains datafrom the DDE server by specifying “ Topic”
and “Item” strings. For example, EQDdeSrv usesthe “Topic” string to identify a
security symbol, and the “Item” string to identify the specific price field for the
specified security.

Implementation

EgDdeSrv depends upon EqDatSrv, the Equis Data Server which aso accompanies
MetaStock Professional. EqDatSrv isnot a DDE server. It isintended to supply real-
time data to MetaStock Professional, and is configured to work with the real-time data
feed that the MetaStock customer has purchased. There are significant differences
between data vendors and the way they supply data. EqDatSrv’sjob isto interface with
aparticular vendor and normalize the data feed into areasonably standard format,
hiding the significant differences from MetaStock Professional. The programmatic
interface to EqDatSrv can be complex, and is limited to specific programming language
congtraints. EqDdeSrv, on the other hand, will work with any DDE client that sends
through the correct character strings. When EqDdeSrv is started, it will in turn start up
EgDatSrv (if necessary). EqDdeSrv is both aclient and a server, in that it obtains data
from EgDatSrv as a client, then provides that data as a DDE server.

MetaStock®

DDE Data Interface « 17

Interface

Note:

The Service, or Application, string is always“EQDDESRV". Topicisgenerally the
security or index symbol, with the exception of the reserved topic “SYSTEM”. A
discussion of the System topic appears later in this document (see page 20).

Keep in mind that security and index symbols may be vendor-specific. If your client
application contains hard-coded security or index symboals, it may be limited to working only
with the data vendor you are using.)

Item is one of the following strings:

“OPEN" Opening price

“HIGH” High price so far today

“LOW” Low price so far today

“LAST” Latest price today

“PREVCLOSE” Previous trading day’s closing (last) price

“CHANGE” LAST - PREVCLOSE

“TOTALVOL” Total volume today

“YDTOTALVOL” Total volume yesterday (futures only)

“TRADEVOL” Volume of last trade
(this value will be 0 with some data vendors
until the first trade occurs after requesting
values for the specific security)

“DATE” Last trade date (mm/dd/yyyy)

“TIME” Last trade time (hh:mm)

“OPENINT” Open interest (if applicable, otherwise 0)

“BID” Bid

“ASK” Ask

“BIDSIZE” Bid size

“ASKSIZE” Ask size

Note: EqDdeSrv aways returns price data as a formatted string (CF_TEXT type). With the
exception of the Date and Time strings (mm/dd/yyyy and hh:mm), all strings are formatted
as afloating point number with a maximum of four decimal places.

Running EqDdeSrv.exe

EgDdeSrv can be started by clicking on the “Equis DDE Server” shortcut in the Equis
program folder. If you want your application to start EqDdeSrv . exe, you can locate it
by examining the registry at: “HKEY_CURRENT_USER\Software\Equis\Common”.
Beginning with version 7.0 of MetaStock, there will be aregistry key below “ Common”
for each version that is currently installed (i.e. “7.0"). Below the version number isa
registry key “File Paths” which containsastring “ProgramPath”.

The ProgramPath string indicates the folder where the MetaStock executables are
located. Append thefolder “\Servers” to the program path and verify the existence of
EqDdeSrv.exe.

CAUTION:

Note:

If there are multiple versions of MetaStock installed, your application should display a
dialog with each of the versions and allow the user to pick the correct one.

Before starting EQDdeSrv from your program, attempt to establish a connection with it to
determineif it is aready running. Arbitrarily running EqDdeSrv .exe when it is aready
running will cause EqQDdeSrv to display its summary window.

18 « DDE Data Interface

MetaStock®

After starting, EqDdeSrv will appear as an icon in the System Tray. A right-click with
the mouse on the icon will present the following four menu choices: Open, Help,
About, and Close.

Open causes EqDdeSrv to present a summary screen similar to this:

: EqDdeSry - Equiz DDE Server !EE

File Help
Operation Count Time Last

DDE
Connections: 1 08:17:19 MSFT
Data Hequests: 2 08:17:19 MSFT
Advise Requests: 1 081719 MSFT
Advise Callbacks: 1154 08:44:30 MSFT
System Requests: 0

Equis DataServer
Updates: 12 08:44:30 MSFT

The summary screen shows a current count of several DDE functions, including the
time of the last operation for each function and the symbol involved in the last
operation. In addition, the summary screen shows the activity of the Equis Data Server,
which is supplying datato the DDE server. All counts (with the exception of
“Connections”) and times can be reset using the Reset Counts menu option under File.
The entriesin the “Operation” column are as follows:

Entry Meaning

Connections Number of active connections, or conversations with DDE clients.
Thereis 1 active connection for each security requested by each
client. For example, if aclient isrequesting updates for several price
fields for only two securities, there will be two connections for that
client represented in the “ Count” column.

Data Requests Number of cold-link requests that the DDE Server has received.
Advise Requests |Number of hot-link requests that the DDE Server has received.
Advise Callbacks |Number of hot-link updates that the DDE Server has processed.
System Requests |Number of “System” Topic requests already serviced by the DDE
server. The last System function (Item) is displayed in the “Last”
column.

EqDatSrv Updates | Number of updates that the DDE server has received from the Equis
Data Server.

CAUTION:

If you attempt to close EqDdeSrv while there are active conversations
(DDE clients receiving data from EqDdeSrv), awarning similar to the following is

displayed:
Confirm EADDESRY Shutdown |

There iz 1 active conwverzation with EQDDESREY.
Are you sure vau want to shut down the DDE server?

oK |

MetaStock®

DDE Data Interface « 19

System Topic

The " System” topic allows a DDE Client to obtain certain information about the DDE
Server. #deFfine entriesfor the standard system topics are included in the ddeml _h
file that accompanies most Windows compilers. Although use of the #define is
recommended, the actual string constants are presented here. Only the Topic and Item
fields are shown in the table. The following System topics are supported by EqQDdeSrv:

Topic |ltem Returned Data
System | Topics Tab delimited list of all securities with active connections.

System |Sysltems Tab delimited list of all supported System Topics: “ Topics’,
“Sysltems”, “ Status”, “Formats’, and “ TopicltemList”.

System | Status EgDdeSrv always returns “Ready”.

System |Formats EgDdeSrv always returns “ Text”. CF_TEXT isthe only format
supported by EqDdeSrv.

Security| TopicltemList| Note: A security symbol is specified in the Topic field.

Symbol Returned data is atab delimited list of all the price fields that have

an active advise request by any DDE Client. For example, if two
DDE clients have hot-links to Microsoft stock, and the first is
watching “LAST” and “TRADEVOL”", and the second is watching
“LAST” and “OPEN?", the returned data would by atab delimited
string containing “OPEN”, “LAST”, and “TRADEVOL”".

Examples

Microsoft Excel Example.

Microsoft Excel has the ability to act as a general DDE client. Y ou can specify aDDE
hot-link in any cell by entering aformula of the form:

=Server | "Topic"!ltem
The server is separated from the topic by the vertical solid bar character, and the topicis
separated from the item by an exclamation point. For example, to observe the
constantly updated last price for Microsoft, you would enter the following formulain
any cell:

=EQDDESRV| "MSFT " ILAST

Notes:
» The case of the topic isimportant only if the data vendor is case sensitive.

« The date and time strings are converted by Excel to Julian dates. Y ou must apply
Excel date and time formatting to view these fieldsin MM/DD/YYYY format.

The Excel screen shown on the next page has a DDE formulain each cell that is
displaying aprice value. The %Chg column is calculated from the LAST and
PREVCLOSE columns. All values update in real time, and the pie chart at the bottom
constantly reflects the changes in the TRADEVOL column. The cursor ison cell E3,
and you can observe the formulain the Excel edit line:

20 « DDE Data Interface

MetaStock®

Formula for cell E3

X Microzoft Excel - eqddesrv xls

ﬁﬁile Edit Wiew Insert Format Tools Datall iindow

Help

Cursor location (cell E3)

Dl SR (smacp- -

ew = Aszned - B

[aria - 10 v|312|§§§|$% W 8| = = | BH-A -

E3 =] = =EqDDESHMSFTllast)

A | B | ¢ [0 [E] F c | H I [J e]
|1 | OPEN | HIGH LOW LAST | PREVCLOSH| CHANGE % Chy TOTALVOL TRADEVOL OPENINT BID AS
| 2 [DELL | 34 5/6| 3511416 34 3/1jsma 34 114 368 20717200 100/ O 35 14| 3E
| 3 |MSFT | 80 148 | 82 58 &0 |825f32 225132 3.50) 24830400 2000 O 82 116 &2
| 4 [BMCS | 48 7/8 | 4B 15/16 45 7/ oty 48 M6 -1 78 387 3014400 2000 O 16 THE 46
| 5 [AMZN (11315716 114 12 109 34 112 1/3 111 916 916 050 4025300 100 0O 12 148 112
| 6 [INTC 52 &/ | 5327/32 52 52 156/16 SU11A6 1 14 242 20750300 2000 O 52 7/ a2
| 7 |AOL 111 112 108 110 110 38 | - 3@ 034 12383200 100/ 0O 0 0
| B [NOVL | 23 316 2311416 23 1/16| 23 1/16 23 316 1/8 054 2094200 2000 O 23 116 2°
| 9 [csco 112 172 (114 111 113 144 1111416 1 946 140 8100800 400/ O 13 18 11:
|10 |AMAT | B2 172 B4 34 B2 38 B4 1116 611316 2 7/ 465 BE08400 500 O 64 946 B
|11 [ORCL | 27 144 | 27 56 26 1/ | 26 3@ 7 178 3 276 9892900 2000 O % 38 2
| 12 |RTRSY | 53 B3 12 | 82 38 | 82 5@ B1 1116 15416 1.15 83900 100/ O 82 58 | &
|13 [DIS 29 34 23 78 29 14 29 14 29 58 3 127 3795700 900 O 0
| 14 |GTNR 4 116 4 158 | 31516 4 4 1732 - 132 078 26400 400/ O 1
|15 |ATHM | 97 7/3 100 1/4 | 94 1/4 96 3/3 97 1| - 7m 090 4038800 100 0 9 38 | ¢
|16 (CSGS | 25 18 | 25 7/8 24 3/ | 2513016 23 3 2 146 868 893300 500 O 25 34
17
% Trade YWolume
| 20 |
| 21 |
22
| 23 |
| 24 |
| 25 |
% ||:|1 BEZ0304@5O06E7O05 @5 @10011 012 @13 B14 @15
44 |'p [# | EgDdeSry Sample Sheetz # Sheet3 Jil
Ready | [

MetaStock® DDE Data Interface « 21

Simple C Example

/* EqDDeDemo - This DDE client is a short example of how to obtain price
data from the Equis DDE Server (EQDDESRV.EXE).
*/

#include <windows.h>
#include <ddeml.h>
#define WM_USER_INIT_DDE (WM_USER + 1) // Event to initialize DDE

// Window callback
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

// DDE callback

HDDEDATA CALLBACK DdeCallback (UINT, UINT, HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD);
DWORD idInst; // global program instance

HCONV hConv; // global handle to DDE conversation

HWND hWnd; // global handle to window

char szValue[20]; // receives values obtained from DDE server
char szAppName[] = "EgDdeDemo™;

int WINAPI WinMain(HINSTANCE hlnstance,
HINSTANCE hPrevinstance,
LPSTR IpCmdLine,
int nCmdShow)

MSG Msg;
WNDCLASSEX WndClass;

strcpy(szvalue, "<wait>""); // Initialize value string

// Fill the Wind Class structure

WndClass.cbSize sizeof(WndClass);
WndClass.style CS_HREDRAW | CS_VREDRAW;
WndClass. IpfnWndProc WndProc;
WndClass.cbCIsExtra ;

WndClass.cbWndExtra 0;

WndClass.hlnstance hilnstance;

WndClass.hlcon
WndClass.hCursor
WndClass. hbrBackground
WndClass. IpszMenuName
WndClass. IpszClassName
WndClass.hlconSm

Loadlcon(NULL, IDI_APPLICATION);
LoadCursor(NULL, IDC_ARROW);

(HBRUSH) GetStockObject(WHITE_BRUSH);
NULL;

szAppName;

Loadlcon(NULL, IDI_APPLICATION);

RegisterClassEx (&WndClass);

// hard-code a small window size & location for demo purposes
hWnd = CreateWindow (szAppName, "Equis DDE Client Demo",
WS_OVERLAPPEDWINDOW,
100, 100, 250, 70,
NULL, NULL, hlnstance, NULL);

ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd);

// Initialize the DDEML library
if (Ddelnitialize (&idInst, (PFNCALLBACK) &DdeCallback,
APPCLASS_STANDARD | APPCMD_CLIENTONLY, OL))

MessageBox (hWnd, ""Unable to initialize DDE client.",
szAppName, MB_ICONEXCLAMATION | MB_OK);

DestroyWindow(hWnd) ;

return FALSE;

// Start the DDE conversation
SendMessage(hWnd, WM_USER_INIT_DDE, 0, OL);
while (GetMessage(&Msg, NULL, 0, 0))

TranslateMessage(&Msg);
DispatchMessage(&MsQ) ;

}
DdeUninitialize(idInst);
return Msg.wParam;

22 « DDE Data Interface MetaStock®

}

LRESULT CALLBACK WndProc (HWND hWnd, UINT nMsg, WPARAM wParam, LPARAM IParam)
{

static char szService[] = "EQDDESRV";
static char szTopic[] = "MSFT"; // Microsoft stock;
static char szltem[] = "LAST";

switch (nMsg)
case WM_USER_INIT_DDE:
{
HSZ hszService;
HSZ hszTopic;
HSZ hszltem;
HDDEDATA hData;

// Try to connect to DDE server

hszService = DdeCreateStringHandle (idInst, szService, 0);

hszTopic
hConv

it (hConv == NULL)

// Server isn"t loaded - try to load it...
WinExec (szService, SW_SHOWMINNOACTIVE);

DdeCreateStringHandle (idInst, szTopic, 0);
DdeConnect (idInst, hszService, hszTopic, NULL);

hConv = DdeConnect(idlInst, hszService, hszTopic, NULL);

}

// Finished with the service and topic string handles

DdeFreeStringHandle (idInst, hszService);
DdeFreeStringHandle (idInst, hszTopic);

if (hConv == NULL) // Couldn"t start the server!

MessageBox(hWnd,

"Unable to connect with EgDdeSrv.exe",
szAppName, MB_ICONEXCLAMATION | MB_OK);

return O;

// Request current value of MSFT "Last" price (cold-link).

// This is a synchronous snap-shot of data.

hszltem = DdeCreateStringHandle (idInst, szltem, 0);
hData = DdeClientTransaction(NULL, O, hConv, hszltem,
CF_TEXT, XTYP_REQUEST, 3000, NULL);

if (hData != NULL)

DdeGetData(hData, (unsigned char *) szValue, sizeof(szValue), 0);

InvalidateRect(hWnd, NULL, FALSE);
DdeFreeDataHandle(hData) ;

}

// Request notification of changes in MSFT "Last" price (hot-1ink).
// This will cause XTYP_ADVDATA events to be sent to the dde callback function

// each time the "Last" value changes.

DdeClientTransaction(NULL, O, hConv, hszltem, CF_TEXT,
XTYP_ADVSTART | XTYPF_ACKREQ, 3000, NULL);

DdeFreeStringHandle (idInst, hszltem);

return O;
case WM_PAINT:
{
HDC hDc;
PAINTSTRUCT ps;
char szBuf[100];

hDc = BeginPaint (hWnd, &ps):
TextOut(hDc, 10, 10, szBuf,

wsprintf (szBuf, "Microsoft Last Value:
EndPaint(hWnd, &ps);

return O;
case WM_CLOSE:
it (hConv 1= NULL)

HSZ hszltem;

%s',

szValue));

MetaStock®

DDE Data Interface « 23

hszltem = DdeCreateStringHandle (idInst, szltem, 0);

DdeClientTransaction (NULL, O, hConv, hszltem, CF TEXT, XTYP_ADVSTOP,
3000, NULL);

DdeFreeStringHandle (idInst, hszltem);

DdeDisconnect (hConv);

break;

case WM_DESTROY:
PostQuitMessage (0);
return O;

default:
break;

return DefWindowProc (hWnd, nMsg, wParam, IParam);

}

HDDEDATA CALLBACK DdeCallback (UINT nType, UINT nFmt, HCONV hConv,HSZ hSzl, HSZ hSz2,
HDDEDATA hData, DWORD dwDatal, DWORD dwData2)
{

HDDEDATA Rtrn;
switch (nType)
{

case XTYP_ADVDATA:
if (NFmt == CF_TEXT)

/*

// You could get the name of the item being updated

// ifT you wish by calling DdeQueryString:

char szltem[20];

DdeQueryString (idlnst, hSz2, szltem, sizeof(szltem), 0);
*

/

// CGet the actual data
DdeGetData(hData, (unsigned char *) szValue, sizeof(szValue), 0);
InvalidateRect(hWnd, NULL, FALSE);
Rtrn = (HDDEDATA) DDE_FACK;
¥
else
Rtrn = (HDDEDATA) DDE_FNOTPROCESSED;
break;
case XTYP_DISCONNECT:
hConv = NULL;
Rtrn = NULL;
break;
default:
Rtrn = NULL;
break;

}

return Rtrn;

The output of the preceding program is a small window similar to the following, with a
constantly updated price value:

B Equiz DDE Client Demo _ O] =

Microsoft Last Value: 81.7500

Suggested Resources
* Programming Windows 95 by Charles Petzold, Microsoft Press

e C/C++ User’sJournal, August 1998, “Encapsulating DDE” by Giovanni Bavestrelli
(Presents an excellent C++ framework for developing DDE applications)

« Microsoft Developers Network.

24 « DDE Data Interface MetaStock®

MetaStock External Functions (MSX)

Introduction

Note:

This chapter explains the use of the MSX API and provides several examples of how to
useit correctly. It contains the instructions necessary to implement MSX DLLs, and
assumes that the devel oper is an experienced programmer familiar with security price
data and with creating dynamic link libraries.

The MetaStock External Function (MSX) Application Programming Interface (API)

alows software developers to dynamically add externally defined functions to the

MetaStock Formula Language. Thisfeatureisavailablein all releases of MetaStock

above (and including) version 7.0.

When MetaStock initializes, it scans a pre-defined folder, looking for any DLL s that

correctly implement the MSX API. When an MSX DLL isfound, the functionsthat it

implements are automatically added to the MetaStock Formula Language.

These new functions can be used to create Custom Indicators, Explorations, System

Tests and Expert Advisors using MetaStock's formulatools.

The MSX API supports any programming language that meets the following criteria

» Exports DLL functions by name

* Supports the Windows stdcal I stack frame convention

* Creates 32-bit DLLs for Windows 2000, Windows XP, or Windows NT version 4.0
or greater (commonly called aWin32 DLL)

Microsoft Visual Basic does not have the capability to produce aWin32 DLL.

Therefore, MSX DLLs cannot be written in Microsoft Visual Basic. A good alternative for
VB programmersis PowerBASIC, an inexpensive compiled Basic that is syntax-compatible
with VB and can produce Win32 DLLs.

MSX DLL Capabilities

The functions that can be implemented in MSX DLLsare similar in behavior to the
standard built-in MetaStock functions. In other words, MSX functions can be written to
perform cal culations based on any available price data or results of other functions.

All MSX DLL functionsreturn adataarray. This exactly parallels the behavior of the
MetaStock built-in functions. The returned data array can be plotted by

Custom Indicators or used in any way that a standard built-in function can be used.

MSX DLLs can perform calculations of virtually unlimited complexity. You havethe

full power of conventional programming languages like C or Pascal with al of their

logic, data manipulation and rich flow-control capabilities.

Things that you can do with an MSX DLL

Things that you can do with an MSX DLL include;

« Implement functions not provided with MetaStock.

* Perform complex calculations on price data.

* Provide multiple functionsin asingle MSX DLL.

» Access stored MetaStock price datausing MSFL (included in the MetaStock
Developer’s Kit — see the MSFL documentation later in this manual for details).

MetaStock®

MetaStock External Functions (MSX) « 25

« Create functions that can be used by Custom Indicators, System Tests, Explorations,
and Experts.

« Distribute your compiled MSX DLL to other users.

Things that you cannot do with an MSX DLL

Things that you cannot do with an MSX DLL include:

« Manipulate GUI functions, including plotting and user dialogs.

» Accessthe standard MetaStock built-in functions from within your DLL.

Getting Assistance

Due to the complexity of programming languages and devel opment environments,

Equisis ableto provide only minimal technical support for the MSX API.

We will help with understanding how to use the MSX API, but we cannot aid in writing

or debugging your DLL.

Important Notes

« Thismanual explainsthe use of the MSX API and provides several examples of how
to useit correctly.

« Itisimperativethat you read this entire chapter, in the order presented, to successfully
createan MSX DLL.

* Itisessentia that you follow al specified programming guidelines and API
requirements. External DLLs receive pointers to data structures allocated by
MetaStock. Failure to follow the MSX programming guidelines may result in your
DLL modifying memory outside the boundaries of the defined data structures,
potentially corrupting other MetaStock variables and causing loss of the user’ s data.

Note: Equisshall not be responsible for any damages of any type caused by MSX DLLs.

For more information on Technical Support for the MetaStock Devel oper’ s Kit,
see page 4.

Overview

MetaStock will automatically recognize and load any MSX DLL that existsin the
“External Function DLLSs" folder, which is a subfolder of the MetaStock system
folder.
An MSX DLL implements one or more external functions that can be called from
within any formulain MetaStock. In order to implement an external function, an
MSX DLL must perform two basic tasks:
* Define the function syntax including the function name, number of arguments, and

argument types.
* Cadculate the results of the function when it is called and return those results to

MetaStock.
Each external function has a unique name that identifies the function within a
MetaStock formula. The syntax for each function can define up to nine arguments that
supply numeric datafor calculations or control the behavior of the calculation.
MetaStock users call external functions from within formulas by using the External
Formula function:

ExtFml ("'DLL Name.Function Name' ,arg1,..,argn)
Asan example, if an MSX DLL named MyDLL implements afunction called
MyFunction, which accepts a single price data argument, the function can be called
from any MetaStock formula by the following:
ExtFml (""MyDLL .MyFunction', close)

26 MetaStock External Functions (MSX) MetaStock®

MSX DLLsexport two to four initialization functions by name. These functions are
used by MetaStock to query the DLL about the functions that are implemented in

the DLL. Whilethe DLL initialization functions themselves are rigidly defined by the
MSX API, the external functions that they define are extremely flexible.

As mentioned earlier, external functions have names that are defined by the MSX DLL
and can have up to nine arguments. Each argument defined for afunction can be one of
four types:

« Data Arrays(e.g., Open, High, Low, Closg, etc., or the results of another function)
« Numeric Constants (e.g., 10, 20, -50, etc.)

e Sring Constants (e.g., “Hello World”, etc.)

* Customized sets(e.g., SIMPLE, EXPONENTIAL, etc.)

Details and examples of how aDLL defines these arguments are presented later in this
document.

Extreme care must be taken by the programmer to ensure that all MSX DLL functions
are well-behaved. Because they are called directly by MetaStock, any fatal exception
caused by an MSX DLL function will affect MetaStock — possibly causing a forced
shutdown and loss of user data. MetaStock attemptsto trap all common exceptions, but
authors of MSX DLLs should not rely on having their exceptions handled by
MetaStock. Any serious exception that MetaStock traps will cause the DLL containing
the offending function to be detached and the external functionsit contains will not be
available to the MetaStock user.

Function Prototype Section

The functions defined inan MSX DLL fall into two categories: Initialization Functions
and Calculation (or External) Functions. Initialization functions are called by
MetaStock during startup to determine what external functions are available and what
arguments they require. Calculation functions are the functions that are available to
MetaStock users who use your MSX DLL.

Initialization Functions

MSXInfo
Thisisthefirst function called in an MSX DLL. It returns basic information about the
DLL and verifiesthat it isavalid MSX DLL. Thisfunction is required and will always
be called during initialization.
C
BOOL __stdcall MSXInfo (MSXDLLDef *a_psDLLDef)
Delphi Pascal
function MSXInfo (var a_psDLLDef : MSXDLLDef)
: LongBool; stdcall;
PowerBASIC/DLL
FUNCTION MSXInfo SDECL ALIAS “MSXInfo” (_
a_psDLLDef AS MSXDLLDef PTR) EXPORT AS LONG
Parameters
a psDLLDef Pointer to the MSXDLLDef structure to be filled with copyright, number
of external functions, and MSX version. See page 32.

Return Values
e MSX_SUCCESSIif successful
« MSX_ERROR for internal error

MetaStock®

MetaStock External Functions (MSX) « 27

MSXNthFunction
Thisfunction is called once during initialization for each external function specified by
the MSXInfo call. See “ MSXInfo” (page 27) for more details on using this function.
C
BOOL __ stdcall MSXNthFunction (int a_iNthFunc,
MSXFuncDef *a_psFuncDef)
Delphi Pascal
function MSXNthFunction (a_iNthFunc: Integer;
var a_psFuncDef: MSXFuncDef)
:LongBool; stdcall;
PowerBASIC/DLL
FUNCTION MSXNthFunction SDECL ALIAS “MSXNthFunction” (_
BYVAL a_iNthFunc as LONG, _
a_psFuncDef AS MSXFuncDef PTR) EXPORT AS LONG
Parameters
a iNthFunc The zero-based index indicating which function’s information is
requested.
a_psFuncDef Pointer to the MSXFuncDef data structure (page 32) to befilled in with
external function information..

Return Values
* MSX_SUCCESSIf successful
 MSX_ERROR for internal error

MSXNthArg
Thisfunction is called once during initialization for each argument specified for each
external function. If none of the external functions have arguments this function will not
be called and is not required.
C
BOOL __ stdcall MSXNthArg (int a_iNthFunc,
int a_iNthArg,
MSXFuncArgDef *a_psFuncArgDef)
Delphi Pascal
Function MSXNthArg (a_iNthFunc: Integer;
a_iNthArg: Integer;
var a_psFuncArgDef: MSXFuncArgDef)
: LongBool; stdcall;
PowerBASIC/DLL
FUNCTION MSXNthArg SDECL ALIAS “MSXNthArg” _
BYVAL a_iNthFunc AS LONG, _
BYVAL a_iNthArg AS LONG, _

a_psFuncArgDef AS MSXFuncArgDef PTR)
EXPORT AS LONG

Parameters

a_iNthFunc The zero-based index indicating which function’ sinformation is
requested.

a iNthArg The zero-based index indicating which argument of the specified

function’sinformation is requested.

28 « MetaStock External Functions (MSX) MetaStock®

a_psFuncArgDef Pointer to the MSXFuncArgDef data structure (page 33) to befilled in
with external function argument information.

Return Values
e MSX_SUCCESSIif successful
« MSX_ERROR for internal error

MSXNthCustomString

Thisfunction is called once during initialization for each Custom Argument variation
specified for each external function. If none of the external functions have custom
arguments this function will not be called and is not required.

C
BOOL
__stdcall
MSXNthCustomString (int a_iNthFunc,
int a_iNthArg,
int a_iNthString,
MSXFuncCustomString *a_psCustomString)

Delphi Pascal
function
MSXNthCustomString (a_iNthFunc: Integer;
a_iNthArg: Integer;
a_iNthString: Integer;
var a_psCustomString: MSXFuncCustomString)
: LongBool; stdcall;

PowerBASIC/DLL
FUNCTION MSXNthCustomString SDECL ALIAS “MSXNthCustomString” (_
BYVAL a_iNthFunc AS LONG, _
BYVAL a_iNthArg AS LONG, _
BYVAL a_iNthString AS LONG, _
a_psCustomString as MSXFuncCustomString PTR) _
EXPORT AS LONG

Parameters
a_iNthFunc The zero-based index indicating which function’s information is
requested.
a_iNthArg The zero-based index indicating which argument of the specified
function’s information is requested.
a_iNthString The zero-based index indicating which string of the custom

argument of the specified function is requested.
a_psCustomString Pointer to the MSXFuncCustomSring data structure (page 34) to
befilled in with external function custom argument information.

Return Values
e MSX_SUCCESSIif successful
* MSX_ERROR for interna error

MetaStock® MetaStock External Functions (MSX) « 29

Calculation Functions
All externa calculation functions have the following prototype:

C
BOOL
__stdcall
<FuncName> (const MSXDataRec *a_psDataRec,
const MSXDatalnfoRecArgsArray *a_psDatalnfoArgs,
const MSXNumericArgsArray *a_psNumericArgs,
const MSXStringArgsArray *a_psStringArgs,
const MSXCustomArgsArray *a_psCustomArgs,
MSXResultRec *a_psResultRec)
Delphi Pascal
function
<FuncName> (const a_psDataRec: PMSXDataRec;
const a_psDatalnfoArgs: PMSXDatalnfoRecArgsArray;
const a_psNumericArgs: PMSXNumericArgsArray;
const a_ psStringArgs: PMSXStringArgsArray;
const a_psCustomArgs: PMSXCustomArgsArray;
var a_psResultRec: MSXResultRec)

: LongBool; stdcall;
PowerBASIC/DLL

FUNCTION
<FuncName> SDECL ALIAS “<FuncName>” _
(a_psbhataRec AS MSXDataRec PTR, _

a_psDatelnfoArgs AS MSXDatalnfoRecArgsArray PTR, _
a_psNumericArgs AS MSXNumericArgsArray PTR, _
a_psStringArgs AS MSXStringArgsArray PTR, _
a_psCustomArgs AS MSXCustomArgsArray PTR, _
a_psResultRec AS MSXResultRec PTR) EXPORT AS LONG

Note: <FuncName> isthe name of your function. The name listed in the EXPORTS section or

ALIAS string of your code and the name returned by the MSXNthFunction (page 28) must
exactly match the spelling and case of this function name.

Parameters

a_psDataRec The read-only data structure that contains all available price data and
security details. This structure is always passed to all calculation
functions, regardless of their defined argument lists. (page 36).

a_psDatalnfoArgs The read-only data array arguments expected by the function. (page 38).

a_psNumericArgs The read-only Numeric (float) arguments expected by the function.
(page 39).

a psSiringArgs Theread-only String arguments expected by the function. (page 39).

a_psCustomArgs The read-only custom argument 1D’s expected by the function.
(page 39).

a_psResultRec A data structure containing the data array that your function will fill with
data to be returned to MetaStock. Be sure to set both iFirstValid and
iLastValid in a_psResultRec->psResultArray before returning from
your function.

Cautions:

« Do not write values to the a_psResultRec-> psResultArray->pf\Value array beyond the
index value of a_psDataRec->sClose.iLastValid. Writing beyond that point will
corrupt MetaStock system memory, and may cause aloss of user data.

* MetaStock does not support iLastValue indexes greater than the iLastVaue index of
the ‘Close’ data array. See page 58 for more details.

30 « MetaStock External Functions (MSX) MetaStock®

Return Values
e MSX_SUCCESSIf successful
« MSX_ERROR for internal error

Data Types

The MSX API defines several datatypes and structures, which are used to transfer
information between MetaStock and MSX DLLs.

Formats
This section is an overview of the different data types.

Dates

Dates are of typelong and are stored in ayear, month, day format (YYYYMMDD) with
the year being afour digit year (e.g. January 15, 1997 is stored in along as 19970115).
Valid dates range from January 1, 1800 to December 31, 2200.

Times

Times are of type long and are stored in hour, minutes, tick order (HHMMTTT)

(e.g. 10:03:002 isstored in along as 1003002). Times are dwaysin twenty-four hour format.
Notice that the last segment of the time is not seconds, but ticks. MetaStock uses atick count
instead of seconds to handle the case of multiple ticks per second without duplication of
records. Thefirgt tick of aminuteis 000, the second is 001, and so on, up to 999. If more than
1000 ticks occur in any given minute, the 999 tick count will repeat until the minuteisreset.
This condition isnot an error. Vdid times range from 00:00:000 to 23:59:999.

Strings

Strings are of type char and are stored as null (zero) terminated char sequences.

Care must be taken when writing to any strings passed into your DLL that charactersare
not written beyond the defined string boundaries. All writeable stringsin MSX
structures are of MSX_MAXSTRING size. MSX_MAXSTRING is defined in the
MSXStruc.h (MSXStruc. inc for Delphi, MSXStruc.bas for PowerBASIC) file.
When writing data to a string be sure to include the null byte at the end.

CAUTION:

Writing beyond the defined string boundaries may cause an unrecoverable exception
that could result in loss of user data.

Variable Notation

The MSX data structures, function prototypes, and source code templates use aform of
Hungarian notation to designate the type of each variable or structure member. Thetype
prefixes each variable name. A list of the notations used by the MSX API follows:

Notation |Type |Description
c char Character, an 8-bit signed value.

f float Single precision, 32-bit floating point number.

double | Double precision (long float) 64-bit floating point number.

int Integer, a 32-bit signed value. (PowerBASIC integers are 16-hit.)

long Long integer, a 32-bit signed value.

i

|

p All Pointer, a 32-bit address.

s All Structure, a user defined type.

char Null terminated string of signed characters.

b BOOL | Booleanint (32-bit) values.

| All Local variables (defined inside function).
a All Arguments (passed into functions).

MetaStock®

MetaStock External Functions (MSX) « 31

Initialization Structures

The following structures are used to communicate between MetaStock and the M SX
API initialization functions. These structures allow the MSX DLL to give MetaStock
information regarding function names and function syntax information.

Note: All data structure examples are shown using “C” syntax, and are found in the MSXStruc.h
fileincluded with the MetaStock Developer’s Kit. Corresponding data structure definitions
for Delphi Pascal and PowerBASIC/DLL can be found in the MSXStruc . pas and
MSXStruc.bas files, respectively.

MSXDLLDef structure
This structure contains fields that define the DLL copyright, the number of external
functions exported by the DL L, and the M SX version number. It isused exclusively by the
MSXInfo function. See“ MSXInfo” (page 27) for more details on using this function.
typedef struct
{
char szCopyright[MSX_MAXSTRING];
int iNFuncs;
int iversion;
} MSXDLLDeT;
Parameters
szCopyright A copyright or other information about this DLL should be copied into this
string. Care must be taken not to write more than MSX_MAXSTRING

characters.
iNFuncs The number of external functions exported by this DLL.
iVersion The MSX version number. This should be set to the constant
MSX_VERSION.

MSXFuncDef structure
This structure describes the attributes of an external function that will be exported by
the DLL for use by the MetaStock Formula Language. It is used exclusively by
MSXNthFunction function. See “M SXNthFunction” on page 28 for more details on
using this function.
typedef struct
{
char szFunctionName[MSX_MAXSTRING];
char szFunctionDescription [MSX_MAXSTRING];
int iNArguments;
} MSXFuncDef;

Parameters
szFunctionName The exported name of the external function. Thisisthe function
name that will be used in the ExtFml() call by the MetaStock
user.

Note: Thisname must exactly match the spelling and case used in the
EXPORTS or ALIAS section of your code (see example
programs). Thisis the name used by the GetProcAddress
system call to obtain the address of this function at runtime.
szFunctionDescription The longer description of the external function.
Thisis displayed in the MetaStock Paste Functions Dialog.

32 « MetaStock External Functions (MSX) MetaStock®

iNArguments The number of arguments that the external function expects.
You may specify up to a maximum of MSX_MAXARGS (9)
arguments. Functions with zero arguments are valid. All
functions, regardless of the number of defined arguments, will
have access to security price data and security detail
information for performing calculations. Price data and security
details are automatically supplied to al functions without the
need for an explicit argument.

MSXFuncArgDef structure

This structure defines a specific argument for an external function. It isused exclusively
by the MSXNthArg function. See “ MSXNthArg” (page 28) for more details on using this
function.

typedef struct

{
int iArgType;
char szArgName[MSX_MAXSTRING];
int iNCustomStrings;
} MSXFuncArgDefT;
Parameters

iArgType The argument type. There are four valid argument types:

MSXDataArray Specifiesthat the argument can be a security price
array (e.g., Open, High, Low, Closg, etc.), anumeric
constant (e.g., 10, 20, -5, etc.), or the result of
another function (e.g., Mov(c,30,9)).

MSXNumeric Specifies that the argument must be a numeric
constant (e.g., -5, 10, 20, -15, etc.). Checksfor valid
constant ranges must be made during calculation
(i.e., MetaStock does not know, and therefore cannot
check, if the number iswithin avalid range).

MSXString Specifies that the argument must be a quote-
enclosed string (e.g., “MSFT” or “COMPLEX").
When a calculation is called, the string supplied by
the user is passed to the MSX DLL calculation
function exactly as it appears within the quotes.

MSXCustom Specifiesthat the argument must be from adefined set
of possible entries. Thisisaso known asa*custom
string” argument. As an example, acustom string could
be defined that allows a user to enter SMPLE,
EXPONENTIAL or WEIGHTED for an argument.
When auser calsthe externa function, this argument
must contain the text SSIMPLE, EXPONENTIAL or
WEIGHTED (not enclosed in quotes). If the argument
contains some other sequence of characters, itis
flagged as a syntax error.

Note: Custom arguments are not case-sensitive.
A user could enter SSMPle for the example mentioned
above and it would be accepted for SIMPLE.

MetaStock® MetaStock External Functions (MSX) « 33

szArgName Thisisthe name of the argument displayed by the MetaStock Paste
Functions diaog. Thisnameis also used to identify the argument to the
user when they have asyntax error in their ExtFml() call. For example,
the names of the second and third parameters of the MetaStock built-in
moving average function MOV are‘'PERIODS and ‘METHOD’
respectively. If auser left out the second parameter when entering the
ExtFml () function in a Custom Indicator, MetaStock would place the
cursor at the location of the second argument and display a message
similar to: PERIODS expected.

iNCustomStrings The number of custom strings associated with this argument, if it is of
type MSXCustom. For example, if you were defining the third parameter
of the MetaStock built-in moving average function MOV, this entry
would be 14 for: EXPONENTIAL, SIMPLE, TIMESERIES,
TRIANGULAR, WEIGHTED, VARIABLE, VOLUMEADJUSTED, E,
S, T, TRI, W, VAR, and VOL.

Notes:
» MetaStock does not do a partial match on custom strings

« All legal variations of a string must be specified
e Caseisignored

MSXFuncCustomString structure
This structure defines an alowabl e string for a custom argument in an external function.
It isused exclusively by the MSXNthCustomSring function. See
“ MSXNthCustomSring” (page 29) for more details on using this function.
typedef struct

{
char szString[MSX_MAXSTRING];
int ilD;
} MSXFuncCustomString;
Parameters

szString Thisisthe definition of the string. The case will be ignored when MetaStock
attempts to match a user argument with this string. Names may consist of
aphanumeric characters only (A through Z, a through z, and 0 through 9).
Spaces or other specia characters are not alowed.

ilD Thisisanumeric ID associated with this string. When acall is made to calculate
afunctioninan MSX DLL, thisID is passed to the calculation function rather
than the string (szString) itself. Each string must have an ID value. If the MSX
DLL defines multiple strings that are synonyms for the same argument (e.g.,
SIMPLE, SIM, S) then the same | D vaue should be associated with each string.

IMPORTANT: Strings used to define custom arguments must consist only of a phanumeric characters,
eg.,A...Z,a...z,0...9. No spaces or special charactersare allowed. If illegal characters
are detected in your custom arguments, MetaStock will fail the loading of the DLL and
the external functions that it implements will not be available for use.

34 « MetaStock External Functions (MSX) MetaStock®

Calculation Structures

These structures are used by MetaStock and MSX DLLs during the cal culation of
indicators. All calculation functionsin an MSX DLL share acommon prototype.

The structures that are passed to these functions contain all the security price data
(e.g., Open, High, Low, etc.), security details, and function argument data required for
calculation of the indicator.

MSXDateTime structure
The date time structure defines a date and time. An array of MSXDateTime structuresis
included in the MSXDataRec structure (page 36). For non-intraday datathe ITime
member of the structure is set to zero. The section titled “Formats’ on page 31 has more
information on the date and time formats.
typedef struct
{
long IDate;
long ITime;
} MSXDateTime;
Parameters

There are no parameters for this structure.

MSXDatalnfoRec structure

All numeric data used within indicator calculationsis stored in an MSXDatal nfoRec
structure. Thisincludes price data (Open, High, Low etc.), numeric constants and the
resultsof all calculations. The section titled “ Data Storage and Calculations’ on page 56
has more details regarding the use of this structure.

typedef struct

{
float *pfValue;
int iFirstvalid;
int iLastValid;
} MSXDatalnfoRec;
Parameters
pfValue Pointer to an array of float. This array contains all values for a specific set of

data.
iFirstvalid Index of thefirst valid array entry.
iLastValid Index of the last valid array entry.

Notes:

 There are cases where adata array may be empty. For example, if a chart contained
no Open Interest data, the MSXDatal nfoRec structure for Open Interest datawould be
empty. An empty array of dataisidentified by an iFirstValid value greater than the
iLastValid value. Typicaly, iFirstValid would be 0 and iLastValid would be -1.

» Thisoccurs on aregular basis during indicator calculations. It is not an error
condition. Y our code should be prepared to routinely identify and handle an empty
dataarray. Asarule, any indicator calculated on an empty data array resultsin an
empty data array.

MetaStock®

MetaStock External Functions (MSX) « 35

MSXDataRec structure

The MSXDataRec structure is used by MetaStock to supply security price datato
indicator calculations. All relevant price data for a specific security is contained in this
structure. This structure is automatically supplied to all MSX DLL calculation functions
without the necessity of a specific argument. Please see “Programming Guidelines”
starting on page 56 for more details about the use of this structure.

The MSXDataRec structure contains a pointer to an array of MSXDateTime structures

(page 35), aswell asdl the following price MSXDatal nfoRec structures:. Open, High, Low,

Close, Volume, Open Interest, and Indicator (page 35). Itisavailableto al externa

functionsin an MSX DLL. The“Function Prototype Section” on page 27 has more details.
typedef struct

{
MSXDateTime *psDate;
MSXDatalnfoRec sOpen;
MSXDatalnfoRec sHigh;
MSXDatalnfoRec sLow;
MSXDatalnfoRec sClose;
MSXDatalnfoRec sVol;
MSXDatalnfoRec sOI;
MSXDatalnfoRec siInd;
char *pszSecurityName;
char *pszSymbol ;
char *pszSecurityPath;
char *pszOnlineSource;
int iPeriod;
int ilnterval;
int iStartTime;
int iEndTime;
int iSymbolType;
} MSXDataRec;
Parameters
psDate Pointer to an array of MSXDateTime structures. See page 35.
sOpen The open price MSXDatal nfoRec structure. See page 35.
sHigh The high price MSXDatal nfoRec structure. See page 35.
sLow The low price MSXDatal nfoRec structure. See page 35.
sClose The close price MSXDatal nfoRec structure. See page 35.
svol The volume MSXDatal nfoRec structure. See page 35.
sOl The open interest MSXDatal nfoRec structure. See page 35.
sind When an external function is used in a custom indicator, the sind
structure contains the data the custom indicator was dropped on.
If dropped on a high/low/close bar, equivolume, candlevolume, or
candlestick price plot, the structure contains the closing price.
If dropped on another indicator, the values of that indicator are
contained in the structure.
When an externa functionis used in a System Test or Exploration, this
sInd structure contains data for the selected plot. The selected plot is
the price or indicator that has been selected with the mouse.
When an external function isused in an Expert, this structure contains
datafor the plot selected when the expert wasinitially attached to the
chart. It does not contain the currently selected plot, asisthe case with
system tests and explorations. If your MSX DLL requiresthe sind
structure to contain valid datain order to return correct values, it is
important that you clearly instruct users of these requirements.
Note: Theslnd structureisidentical (from the end user’s perspective) to the

MetaStock Formula Language's“ P’ variable discussed in the
MetaStock User's Manual.

36 « MetaStock External Functions (MSX)

MetaStock®

pszSecurityName Descriptive name of the security.

pszSymbol Symbol name of the security.

pszSecurityPath Path to the location where the security is stored. Thisstring may bein
UNC format. Under some circumstancesthis string may be empty. An
empty string should not be treated as an error.

pszOnlineSource Unused —reserved for future use.

iPeriod ‘Daily, ‘W’ eekly, ‘M’ onthly, ‘Y’ early, ‘ Q' uarterly, ‘I’ ntraday.
Additional values may be introduced in the future — do not consider
values outside the currently defined set to be an error.

ilnterval 0 =tick, other value = minutes compression.

Valid for iPeriod = ‘I' ntraday only, otherwise undefined.
iStartTime Interval start time in 24-hour HHMM format.

Valid for iPeriod = ‘1" ntraday only, otherwise undefined.
iIEndTime Interval end timein 24-hour HHMM format.

Valid for iPeriod = ‘I’ ntraday only, otherwise undefined.
i Symbol Type Unused — reserved for future use.

MetaStock® MetaStock External Functions (MSX) « 37

Function Argument structures

Programmer-defined arguments are passed to the external functions in four argument
arrays. MSXDatal nfoRecArgsArray (page 38), MSXNumericArgsArray (page 39),
MSXSringArgsArray (page 39), and MSXCustomArgsArray (page 39). Each of the
arraysis zero-based, and arguments are added to the arrays as they are defined in the
external function argument list from left to right. In other words, if the argument list
contains three MSXNumeric arguments, regardless of how many other arguments of
other types there are in the argument list, the three MSXNumeric arguments will be
found in thefirst three entries of the MSXNumericArgsArray argument array.
An examplewill help illustrate the use of the argument arrays. If an external functionis
defined with the following parameter list:

MyFunc(DataArrayl, Numeric, DataArray2, String, DataArray3,

Custom)
then the function arguments would be found in the following argument array locations:

DataArrayl a_psDatal nfoArgs->psDatal nfoRecs[0]

Numeric| a_psNumericArgs->fNumericg 0]
DataArray?2 a_psDatal nfoArgs->psDatal nfoRecs[1]

String| a_psStringArgs->pszStringg[0]

DataArray3 a_psDatal nfoArgs->psDatal nfoRecs[2]

Custom| a_psCustomArgs->iCustoml D5[0]

For more examples, see the Sample DLL Programs chapter starting on page 63,
the installed sample program source code, and the installed program templates
(MSXTmplt.cpp and MSXTmplt.pas).

Notes:

» Each argument array can contain up to MSX_MAXARGS (9) entries, exactly
corresponding to the number of arguments of that type defined for the particular
external function.

« The number of valid entriesin each argument array is specified in itsiNRecs structure
member. The sum of the iINRecs members of the four argument arrays will equal the
number of arguments defined for the external function.

MSXDatalnfoRecArgsArray structure
MSXDataArray (page 33) arguments required by an external function are included in
thisarray.

typedef struct

{

MSXDatalnfoRec
*psDatalnfoRecs[MSX_MAXARGS] ;

int iNRecs;
} MSXDatalnfoRecArgsArray;

Parameters
psDatalnfoRecs An array of pointers to MSXDatal nfoRecs (page 35).
iNRecs The number of valid entriesin the psDatal nfoRecs array.

38 MetaStock External Functions (MSX) MetaStock®

MSXNumericArgsArray structure
Numeric (float) arguments required by an external function are included in this array.
typedef struct

{
float fNumerics[MSX_MAXARGS];
int iNRecs;

} MSXNumericArgsArray;

Parameters
fNumerics An array of floats.
iNRecs The number of valid entriesin the fNumerics array.

MSXStringArgsArray structure
String arguments required by an external function are included in this array.
typedef struct

{
char *pszStrings[MSX_MAXARGS] ;
int iNRecs;

} MSXStringArgsArray;

Parameters
pszStrings An array of pointersto null (zero) terminated character strings.
iNRecs The number of valid entries in the pszrings array.

MSXCustomArgsArray structure
Custom argument ID’ s required by an external function are included in this array.
typedef struct

{
int iCustomIDs[MSX_MAXARGS] ;
int iNRecs;

} MSXCustomArgsArray;

Parameters
iCustomlI Ds An array of integers containing Custom ID’s.
iNRecs The number of valid entriesin the iCustomlIDs array.

MSXResultRec structure

Datareturned from an external calculation function.
typedef struct
{
MSXDatalnfoRec *psResultArray;
char szExtendedError[MSX_MAXSTRING];
} MSXResultRec;
Parameters
psResultArray Data array returned from cal culation function.
szExtendedError If the external function returns avalue of MSX_ERROR, an extended
description of the error can be copied to this string. MetaStock will display
the contents of this string to the user indicating the cause of the error.

Examples
For examples of sample DLL creation programsin in C, Delphi Pascal, and
PowerBASIC/DLL, see“Sample DLL Programs’ on page 63.

MetaStock®

MetaStock External Functions (MSX) « 39

Creating an MSX DLL

This section describes how to create an MSX DLL using Microsoft Visual C++,
Borland C++ 4.0, Borland C++ 5.0 Borland Delphi, and PowerBASIC/DLL. Most of
these development environments have considerable flexibility in creating DLLSs.

The approach presented here is merely one way to help you get started with your

first DLL.

Note: Microsoft Visual Basic does not have the capability to produce aWin32 DLL.
Therefore, MSX DLLS cannot be written in Microsoft Visual Basic. A good alternative for
VB programmersis PowerBASIC, an inexpensive compiled Basic that is syntax-compatible
with VB and can produce Win32 DLLs.

Microsoft Visual C++ 4.x, 5.0, and 6.0

The MetaStock Developer’s Kit setup installs anew AppWizard called “MetaStock
MSX DLL AppWizard” to the Microsoft Developer’s Studio environment.

To Access the MSX AppWizard:

Stage | For Version 4.x users:
1. Select File> New> Project Workspace.
2. Click Create.

For Version 5.0 and 6.0 users:
1. Select File> New and then click the Projects tab.
2. Highlight MetaStock MSX DLL AppWizard, and select a name and location for the
MSX DLL project.
3. Make sure “Create new workspace” is selected and click OK.
All versions will be presented with the following wizard dialog:

MetaStock M5X DLL AppWizard - Step 1 of 1 x|
— Build Options

M5 DLL: can uze the Microzoft Foundation Claszes [MFC). If you choose to do sa, pou
should obzerve the following guidelines:
o Choose STATIC linking with the MFC libraries - do not use shared MFC DLLs.
o Avoid MFC claszes that are derived from Cwnd. Your DLL must not implement
functionality requiing uger interaction that will delay nomial proceszing by MetaStack.

[ilsze the Microzoft Foundation Classes

— Generated Source Options

Example code iz available in the comment black preceding each required function, as
well as TODO directives to indicate where you should make changes.

¥ Inchude examples and 'TOD Q' enties in generated source code

< Back | Ilert > | Einizh I Cancel | Help |

Y ou may wish to use some of the helpful MFC classes, such as CString and the many
container classes. If you chooseto create aDLL that uses MFC classes, please follow
these guidelines:

« Do not use any classes within your DLL that are derived from CWnd.
* Your DLL should not have any user interface functionality.

40 « MetaStock External Functions (MSX) MetaStock®

Stage Il

Equis strongly suggests that you statically link the MFC librariesto your DLL for the
following reasons:

e The MFC DLLsareinstalled as part of MetaStock, but you cannot be sure that
they will be compatible with your DLL. Statically linking the MFC libraries will
ensure compatibility and eliminate run-time conflicts. The additional overhead of
the static MFC library will be minimal when using the lightweight MFC classes
that are appropriate for useinan MSX DLL.

» Using the MFC DLLswithin your MSX DLL (dynamic linking) requires the
correct and consistent use of the AFX_MANAGE_STATE macro in al exported
functions.

Failure to do so may corrupt MetaStock’s use of MFC, resulting in system
lock-ups and data loss.

A discussion of the AFX_MANAGE_STATE macro is beyond the scope of this
manual. Y ou may research its use in the Visual C++ on-line help.

* Inclusion of the examples and TODO entriesin the generated code is
recommended.

For all versions:
1. Click Finish to create the project.

The newly created project will contain all necessary project files.
Notes:
» The generated files define a user function called “ EmptyFunc”.
Y ou should replace “ EmptyFunc” with your own function(s).
» When you change the name of “EmptyFunc” in your sourcefile, be sureto also
change the EXPORT name in the DEF file.

Before compiling your project:

Before compiling, make sure the IDE is set to find the header file MSXStruc.h.
Y ou can either copy it from the “..\MDK\MSX\C" install directory to your project
directory, or you can set the IDE via“ Tools> Options> Directories” and add the

\MDK\MSX\C” install directory to thelist of include directories.

If you plan to write more than one MSX DLL it would be best to use the latter approach.

B

orland C++ Builder 4.0

Using the Borland C++ Builder Integrated Development Environment (IDE), create a
new DLL project.

To create a new DLL project:

E SR

~

Select File> New from the IDE main menu.

Click the New tab.

Click the Console Wizard icon.

On the Console Application Wizard dialog screen:

a. Select DLL under Execution Type.

b. Click Finish.
The IDE will create anew DLL project called “Projectl”, and will fill in a
beginning DLL source file called Projectl . cpp with afew comments and
some startup code.
Note: If you have been working in the IDE before creating this project, the
project number may be greater than 1.

Delete all of the generated code in the Projectl.cpp edit window except the line:

“#include <condefs.h>"

Select File> Open from the IDE main menu.

Select Any file (*.*) under Files of type control.

Switch to the “..\MDK\MSX\C” install folder.

MetaStock®

MetaStock External Functions (MSX) « 41

10.

11.
12.

13.
14.
15.
16.

17.

Select both the MSXTmpIt.cpp and MSXTmplt.def files.

Both files can be sdlected by holding down the Ctrl key while left-clicking on the files.

Click Open on the Open dialog.

The two files will appear in the IDE under two new tabs.

Select the MSXTmplt. cpp tab.

Highlight the entire contents of theMSXTmp 1t cpp filein the editor and copy it to the

clipboard by selecting Edit> Copy from the IDE main menu (or pressing CTRL+C).

Switch back to the Projectl.cpp tab.

Position the cursor below the “#include <condefs.h>" line.

Select Edit> Paste from the IDE main menu (or press CTRL+V).

The MSXTemplate contents will be pasted into the new project.

Switch back to the MSXTmplt.cpp tab and close the edit window by pressing

CTRL+F4.

Save the project under the name you will be calling your DLL by selecting

File> Save Project As...

Notes:

* TheSave As... dialog will be pointing to the MSX Template folder, so be sureto
create or select anew folder for your project before saving it.

* Besureto replace the name Projectl . bpr with the name you will be calling
your DLL.

After saving your project:

1.
2.

3.

Select the MSXTmp I t.def tab.

Select File> Save As..., and save MSXTmplt.def in your project folder with the

same name you gave your project.

Select Project> Add to Project... and select the .def file you just saved in your

project directory.

Notes:

« The IDE will add alineto your .cpp fileto include the definition file.
For example, if you named your project Foo, the foo.cpp file will now contain
the line “USEDEF(*“Foo.def”) ;". At this point you may edit the _cpp and
-def files to implement your own functions.

« Thetemplate files define a user function called “ EmptyFunc”.
Y ou should replace “ EmptyFunc” with your own function.

« When you change the name of “EmptyFunc” in your source file, be sure to also
change the EXPORT name in the DEF file.

Before compiling your project:

Before compiling your project you must make sure the MSXStruc - h fileis available to
your project. You can either copy thefile from the . \MDK\MSX\C install directory to
your project directory, or you can instruct the IDE where to search for it.

To do this:

1.
2.
3.

Select Project> Options... from the IDE main menu.
Select the Directories> Conditionals tab.
Add the ..MDK/MSX/C install directory to the Include path edit window.

Note: Borland C++ Builder complains about unused argumentsin afunction. Y ou can suppress the
compiler warning by including the following line above each function declaration:
#pragma argsused.

Look at the provided sample DLLs and printed source code in the next chapter for
specific programming requirements.

42 « MetaStock External Functions (MSX) MetaStock®

Borland C++ 5.0

Using the Borland C++ Integrated Development Environment (IDE), create a new
Dynamic Library project.

To create a new Dynamic Library project:
1. Thisisdone by selecting File> New> Project... from the IDE main menu.
A project definition dialog will be displayed.
Specify the project path and name, using the name for your DLL asthe project name.
Select Dynamic Library (.dll) under Target Type.
Select Win32 under Platform, and GUI under Target Model.
De-select all check-box options under Frameworks, Controls, and Libraries.
Select Static under Libraries.
A window will open showing three files: <projectname>.cpp,
<projectname>.def, and <projectname>.rc. Thesefilesdo not yet exist.
7. Copy MSXTmplt.cpp and MSXTmplt.def from the .. \MDK\MSX\C install
directory to your project directory, and rename them to your project name.
(You can do this with Windows Explorer.)
For example, if your project iscalled “MyFuncs’ and islocated at C:\MyFuncs,
copy MSXTmplt.cpp and MSXTmplt.def to C:\MyFuncs, and then rename
MSXTmplt.cpp to MyFuncs.cpp, and MSXTmplt.def to MyFuncs.def.
8. At this point you can double click on the filenamesin the IDE and edit them.
Notes:
» Thetemplate files define a user function called “ EmptyFunc”.
Y ou should replace “ EmptyFunc” with your own function.
* When you change the name of “EmptyFunc” in your source file, be sure to also
change the EXPORT name in the DEF file.

Y ou are now ready to modify the CPP file to implement your functions.

o kWD

Before compiling your project:
Before compiling your project you must make sure the MSXStruc. h file isavailable to
your project. You can either copy the file from the “..\MDK\MSX\C” install directory to
your project directory, or you can instruct the IDE where to search for it.
Todo this:

1. Select Options> Project from the IDE main menu.

2. Highlight Directories under Topics.

3. Addthe MSX install directory to the Source Directories> Include edit window.
L ook at the provided sample DLLs and printed source code in the next chapter for
specific programming requirements.

Borland Delphi 3.0, 4.0, and 5.0

Using the Borland Delphi Integrated Development Environment (IDE), create a new
DLL project.

To create a new DLL project:
1. Select File> New from the IDE main menu.
2. Click the DLL icon.
The IDE will create anew DLL project and will fill in abeginning DLL sourcefile
with afew comments and some startup code.
3. Savethe project under the name you will be calling your DLL by selecting
File> Save Project As....

MetaStock® MetaStock External Functions (MSX) « 43

After saving your project:
1. Select File> Open from the IDE main menu.
2. OpentheMSXTmplt.pas file, located in the . \MDK\MSX\Delphi instal directory.
3. Highlight the entire contents of the MSXTmplt. pas filein the editor and copy it to the
clipboard by sdlecting Edit> Copy from the IDE main menu (or pressing CTRL+C).
4. Switch back to the tab with your project name, and highlight the default comments
and code that the IDE created.
5. Sdect Edit> Paste from the IDE main menu (or press CTrL+V) and the M SXTemplate
contentswill be pasted into the new project, replacing the code generated by the IDE.
6. Change“DelDIl” inthe“library DelDII” lineto the name of your project.
Click the MSXTmplt tab.
8. Right-click anywherein the text, and select “Close Page” or “Close File”
(depending on the version of Delphi you are using).

~

Before compiling your project:

Note: In order to compile your DLL you will have to ensure that the MSXStruc. inc file can be
found. You can either copy it from the ..\MDK\MSX\Delphi install directory to your
project directory, or you can add the ..\MDK\MSX\Delphi directory to thelist of filesthe
Delphi IDE searches when compiling.

To do this:
1. Select Tools> Environment Options from the IDE main menu.
2. Click on the Library tab.
3. AddtheMSX\Delphi ingtdl directory tothelist of directoriesin the Library Path field.

PowerBASIC/DLL 6.0

1. Copy MSXTmplt_.bas fromtheinstal folder ..\MDK\MSX\PBasic tothefolder where
you are going to develop your DLL. (You can do this with Windows Explorer.)

2. Rename your new copy of MSXTmplIt.bas to the name you want for your DLL.
For example, if you were creating an MSX DLL called MyFuncs, you would
rename MSXTmplt.bas to MyFuncs.bas.

3. Open the new filein the PowerBASIC IDE and proceed to make your changes.

Before compiling your project:
In order to compile your DLL you will have to ensure that the MSXStruc.bas file can
be found. You can either copy it from the “.. \MDK\MSX\PBasic” install directory to
your project directory, or you can add the “..\MDK\MSX\PBasic” directory to thelist of
files the PowerBASIC | DE searches when compiling.

1. Select Window> Options....

2. Click the Compiler tab.

3. Typeasemicolon at the end of the Paths> Include line.

4. Following the semicolon, enter the complete path to where the MSXStruc - bas file

was installed (..\MDK\MSX\PBasic) .

Note: Thisoperation will only need to be done once, as the path modification will remain until you
changeit.

Naming your DLL and Calculation Functions

Because MetaStock loads all MSX DLLsfrom the same folder, each MSX DLL must
have aunique name. Be sureto give your DLL adescriptive name that is unlikely to
conflict with aDLL name chosen by another developer. Long file names are supported,
but keep in mind that M etaStock userswill have to type the entire DLL name along with
the function name to reference your functions.

Note: Function names must be unique only within agiven DLL. Choose descriptive names for
each of your functions as a courtesy to the MetaStock users who will be calling them.

44 « MetaStock External Functions (MSX) MetaStock®

Debugging Your MSX DLL

This section describes strategies for debugging MSX DLLswithin the Integrated
Development Environment (IDE) for Microsoft Visual C++, Borland C++ Builder 4.0,
Borland C++ 5.0, and Borland Delphi. IDEs not listed here may have similar
capabilities. (Even though the PowerBASIC/DLL IDE does not allow tracing into a
running DLL, suggestions for debugging a PowerBASIC DLL are provided.)

General Approach

The general approach isto attach the debugger to MSXTest.exe, which in turn loads
your MSX DLL. Whileyou cannot trace into MSXTest itself, you can set breakpoints
within your own DLL code to inspect the data structures being passed into and out of
your functions at runtime.

If MSXTest has your MSX DLL loaded, you cannot recompile the DLL until you either
close MSXTest, or point it to adifferent DLL folder. Thisisbecause MSXTest holds an
open handleto al the DLLsit has loaded and the operating system will not permit you to
deleteaDLL that is attached to a running process. If you wish to set breakpointsin the
initialization functions of your MSX DLL which has aready been loaded by MSX Test,
you can set the breakpoints and then instruct MSX Test to rel oad the DLLs. For acomplete
description of MSXTest read “Testing Your DLL With MSXTest” on page 48.

Microsoft Visual C++ 4.x, 5.0, and 6.0

Stage | Set the Active (Default) Configuration to “Debug” and compile your DLL.
Todo this:

For Version 5.0 and 6.0:

1. Sdect Project> Settings... from the main menu.

2. Select Win32 Debug from the drop-down list on the left.
3. Click the Debug tab on theright.

For Version 4.x:
1. Select “Build> Settings...” from the main menu.
2. Select the “Win32 Debug” version of your project from the list box on the | eft.
3. Click the Debug tab on the right.
4. Make sure the Category drop-down list is set to General.
You will see adialog with four entry fields.
a. Inthe Executable for debug session: field, enter the full path and file name
for MSXTest.exe .
i.e. “C:\Program Files\Equis\MDK\MSX\MSXTest.exe".
b. Leavethe Working Directory field blank.
c. [OPTIONAL] Inthe Program Arguments: field, enter the full path to the
compiled debug version of your MSX DLL i.e. “C:\MyMSXDLL\Debug".
Notes:
Do not supply the name of the MSX DLL, only the path to it.
 Alternatively, you may choose to leave thisfield blank and tell MSXTest
where to find the debug version of your DLL after MSXTest starts.
d. Leavethe Remote executable path and file name: fields blank.
e. Click OK to close the Settings dialog.

MetaStock® MetaStock External Functions (MSX) « 45

Stage Il For all versions:

1.

2.

Set breakpointsin the source code for your MSX DLL the same as you would to
debug anormal application.
Click Go (F5) to launch MSXTest.exe.

Note: You may be presented with adialog stating that M SXTest does not contain debug
information, and asking if you wish to continue. Click OK to continue.
AsMSXTest makes callsto your DLL, the debugger will gain control when any breakpoints
are encountered. You will be able to inspect the contents of any data structures that are
within the scope of your breakpoint.

Borland C++ Builder 4.0

1
2.
3.

Compileyour DLL.
Select Run> Parameters... from the main menu.
Inthe Host Application field, enter the complete path and filename for MSXTest . exe.
(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).
[OPTIONAL] In the Parameters field, enter the full path to the compiled debug
version of your MSX DLL. (Example: C:\MyMSXDLL\).
Notes:
Do not supply the name of the MSX DLL, only the path to it.

 Alternatively, you may choose to leave this field blank and tell MSXTest
where to find the debug version of your DLL after MSXTest starts.

Click OK to close the Run Parameters dialog.

Set breakpointsin the source code for your MSX DLL the same as you would to
debug anormal application.

When you click Run, MSXTest.exe will load.

As MSXTest makes callsto your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

Borland C++ 5.0

1.
2.
3.

o

Compileyour DLL.
Select Debug> Load... from the main menu.
In the Program name field, enter the complete path and filename for MSXTest . exe.
(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).
[OPTIONAL] Inthe Arguments field, enter the full path to the compiled debug
version of your MSX DLL. (Example: C:\MyMSXDLLN\).
Notes:

» Do not supply the name of the MSX DLL, only the path toit.

« Alternatively, you may choose to leave thisfield blank and tell MSX Test

where to find the debug version of your DLL after MSXTest starts.

Click OK to close the Load Program dialog (and start MSXTest.exe running).
Set breakpointsin the source code for your MSX DLL the same as you would to
debug anormal application.
As M SXTest makes callsto your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

Borland Delphi 3.0, 4.0, and 5.0

1.

2.
3.
4.

Compileyour DLL.

Select Run> Parameters... from the main menu.

Click the Local tab.

Inthe Host Application field, enter the complete path and filename for MSXTest . exe.
(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).

46 « MetaStock External Functions (MSX) MetaStock®

5. [OPTIONAL] Inthe Parameters field, enter the full path to the compiled debug
version of your MSX DLL. (Example: C:\MyMSXDLL\).
Notes:
Do not supply the name of the MSX DLL, only the path to it.

 Alternatively, you may choose to leave this field blank and tell MSXTest
where to find the debug version of your DLL after MSXTest starts.

6. Click OK to close the Run Parameters dialog.

7. Set breakpointsin the source code for your MSX DLL the same as you would to
debug anormal application.

8. When you click Run (F9), MSXTest.exe will be launched.
AsMSXTest makes callsto your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

PowerBASIC/DLL 6.0

Y ou cannot trace directly into your PB/DLL code, but you can use the direct approach

of displaying the state of the DLL by popup messages and outputting debug strings.

 Popup messages, viathe MSGBOX command, will cause execution of the DLL to
pause until they are acknowledged.

 You can sprinkle calls to the Win32 system call “ OutputDebugSring” throughout
your DLL without adversely affecting its performance.

A good debug message view utility such as“DebugView” found at
http://www._sysinternals.com can be used to observe al the debug messages
being displayed by your DLL.

» Be sureto append aline feed character to your output string when using
OutputDebugSring, i.e.: OutputDebugString (“Just before initializing
ReturnArray” + CHR$(10))

In either case you can display the values of variables and execution location
information that can help you to track down run-time errorsin your code.

When you are finished debugging be sure to delete al the OutputDebugSring and

MSGBOX trace commands from your finished source.

MetaStock® MetaStock External Functions (MSX) « 47

Testing Your DLL With MSXTest

MSXTest will load your MSX DLLsand allow you to test the functions using actual data.
Y ou may select from three sets of provided data: end-of-day stock, real-time stock, or end-
of-day futures. Each dataset has from O to 1000 datapoints available. Y ou can control
how many datapoints are available for testing your function. An interactive graphical
tree-style display of your functionsallowsfor input of argument values. Resultsfollowing
the execution of your externa function are displayed in a spreadsheet format. Y ou can
print the results, export dl resultsto a CSV (comma delimited) file, or even launch the
application associated with CSV files (normally Microsoft Excel).

IMPORTANT: Itisimportant that you thoroughly test your DLLs using MSXTest before distributing
them to MetaStock users. MSXTest can isolate many potential problems that an
MSX DLL might have.

Thefirst time MSXTest isrun, you will be presented with the setup screen shown
below. Click OK to save your selections or Cancel to ignore changes.

MS¥ Test Setup

— Sample D ata Selection
F 0K I

% End of Day Stock: Date, Open, High, Low, Close, Yolume [, Indizator)

" |ntraday Stock: Date, Time, Cloze, Wolume [, Indicatar) Cancel

" End of Day Future: Date, Open, High, Low, Close, Yolume, Open Interest [, Indicatar)

Mumber of Data Points: |1 oo _IQ

— Indicator Setup

W Fill Indicator aray with simple maving average of Close

Periods: |5 _I;

End indicator ID _l; peniods before end of Cloge data [to test DLL logic).

MSX DLL Path | Browse... |

I Display DLL load results

Note: Clicking OK will cause the sample datato be re-loaded, but DLLs will not be re-loaded until
Load DLLs is selected from the main menu or toolbar.

The fields on the setup screen are defined as follows:

Sample Data Selection

Select one of three pre-defined data sets. The indicated data arrayswill contain data. In dll
casesthe Indicator datawill befilled only if Fill Indicator array with simple moving
average of Close is sdlected in the Indicator Setup section. Y ou can select from 0 to 1000
data points (time periods). Smaller sets may make hand-checking of your functions easier.
Setting the number of datapointsto O will test your DLL for handling empty data arrays.
Indicator Setup

Thiswill fill the Indicator member of the internal MSXDataRec with a simple moving
average of the Close data. Y ou can specify the number of periodsin the moving
average and you can terminate the indicator early. Thisis useful for testing your DLL
on data arrays that may be smaller on both ends than the price data.

MSX DLL Path

Thisiswhere MSXTest looksfor DLLsto load. If thisisthefirst time MSXTest has
been run thisfield will be blank and you should typein the path that contains the desired
DLLs. Alternatively, you can use the Browse button to locate the DLL path.

48 « MetaStock External Functions (MSX) MetaStock®

Display DLL load results

MSXTest can display asummary of DLL load results, including any errors that were
encountered. If this option is not checked the load results will be displayed only if there
areerrors. Selecting this option will always display the load results, regardless of errors.

Loading DLLswhen “Display DLL load results’ is selected in the Setup Screen will
produce awindow similar to the following:

E xternal Funchtion Load Hesults |

DLL Path: IE:HTestDLLsH

DLLs: |3 Functions IE Errars: IEI

DLL Mame: CSampleDLL. 4l -
3 Functionz, C Sample MSx DLL, Copynght [2] Equis International, 2000
11 My Maving Average [Mubdov]
214dd 'n' o Ay Datadoray [Addh]
3 Sum Initialed Price Arrays [OHLCY) [Sumérrays]

DLL Marme: DelphiSampleDLL. Al
2 Functionz, Delphi 5 ample M5 DLL, Copyright [) Equiz International, 2000
11 Moving Average [Mubdov]
2] Reverse the Data Aray [Reverselt]

[N [=latal e om

The DLL path is displayed along with the number of DLLs found, the total number of
functions, and the number of errors encountered while loading the DLLs. If the error
count is non-zero, the specific error will be displayed in the tree view where it occurred,
and the DLL containing the offending function will be marked invalid —its functions
will not be available for testing until the problem isfixed and the DLLs are re-loaded.

The main screen appears as follows:

AMSXTest ol
File Yiew Help
[1.n] | [| 7
f 3 DLL's at C:\TestDLLY CSampleDLL MyMow
B8 CSampleDLL [Wersion 1]
® Meszage: C Sample MS¥ DLL, Copyright (2] Equis Intemational, 2000 Datatray 0: IDpen vl
-4 Functiors .
; h 1. |5
(20708 4y b Oving Avverage [Mybd ov] umefic I

- Fra Add 'n' to Ay Datadrray (Addh) Cuztam 2 ISimD|B vl

---f[x] Sum Initialed Price Arraps [OHLCVI) [Sumdrrays)
E-ad DelphiSampleDLL [Wersion 1)
@ Meszage: Delphi Sample M5k DLL, Copyright [c] Egquis Intermational, 2000
E{Eﬂ Functions
---f[x] Moving Awverage [Mybov)
- i Reverse the Data Amay Reversalt]
-l PESampleDLL [Version 1)
® Message: PowerBASIC Sample MSK DLL, Copyright [2]) E quis Intemational, 2000
=4 Functions
---f[x] ty Mowing Average (Mybdov)
---f[x] Add 'n' to Any Datadray [Addi)

Feady I_I—’— v

---f(x] Sum Initialed Price Arraps [OHLCWI) [Sumdrrays) Call Esternal Function

Thetree-view display showsthat there were three DLLs loaded from C:\TestDLLs\ —
CSampleDLL, DelphiSampleDLL, and PBSampleDLL. (These DLLsare provided with
complete source code as samples with thistoolkit.) The functions contained in each DLL
are displayed including description and name. Beneath each function isalist of the

MetaStock®

MetaStock External Functions (MSX) « 49

arguments for that function, including the argument type. Custom types can be further
expanded to show each possible option.

The following menu options are available;

Menu Option Result

File> Setup Display the setup diaog.

File> Load DLLs Load (or re-load) the DLLs from the path defined in the setup
diaog.

File> Stress Test... Perform comprehensive stress tests on the selected function.

This option is enabled only when aDLL function is selected.
See " Stress Testing Y our DLL Functions’ on page 52 for

more details.
File> Exit Exit the M SX Test application.
View> Toolbar Toggle display of toolbar.
View> Status Bar Toggle display of status bar.

Help> About MSXTest...| Version information for MSXTest and summary of loaded
DLL copyright strings.

The Toolbar contains shortcut buttons to the following menu options:
il Setup

[LoadDLLs
T About MSXTest

When afunction or any of its arguments is highlighted in the display tree, theright side
of the main screen displaysall the arguments. Y ou can fill them in asyou wish and then
click Call External Function. The function will be called with the specified arguments
and the results will be displayed in awindow similar to the following:

M5¥ External Function Results For: CSampleDLL MyMoy

File Edit
Column Heading Font Legend: Safd ffafies - Fanretion Argespends . Bold - Function Regult Momal - Available Price Data Inputs
fpen | Fenpd” | Wethod” | Result | Date | Open | High | Low [Close [wol =«

1 12.8750 5.00000 Simple (0) 0771841934 1287800 129375 1237600 1262500 3762

| 2 | 128563 07/19/1934 126563 126863 124063 12533 1753

| 3 | 125000 07/20/1334 125000 125000 11.96358 120938 2815

| 4 | 121863 07/21/1934 121563 122188 11.87500 119375 2143

| & | 121280 124625 07/22/1934) 121250 126875 11.8125 126406 3822

| B | 126563 1241858 07/25/1334 126563 123063 125625 127363 1280

| 7| 1273 124438 07/26/1934 127813 128125 124375 125938 1357

| & | 125331 124625 0OF/27/1934 125938 125938 123780 123780 73z

| 9 | 123750 128063 07/28/1334 1237500 125625 123125 123750 337

| 10 | 124838 1257500 07/29/1934 124688 1289063 124083 128750 16760

| 11 | 128063 1262500 08/01/1934) 129063 134063 128750 133438 2098

| 12 | 134063 1275000 0840241334 134063 136563 131563 13203 2385

| 13 | 13435 129188 0870371934 134375 1360000 132813 133438 1485

| 14 | 133780 131188 0840441934 133750 134063 131875 131875 1004

| 15 | 131563 13.2563) 0840571334 131563 132188 130625 131250 7an

| 16 | 13.0538 13.2938) 0870871934 130938 132500 130000 13.2500 263

| 17 | 132500 132625 08/09/1934 132800 134688 131875 133780 1004

| 18 | 133750 13.25000 0811041334 1337500 135338 133125 135313 1216

| 19 | 134838 13.2688) 0841171934 134683 140000 134638 138125 2Df'l;|

«| | »

¥ Format Date/Time Cloze |

The incoming arguments are displayed first under Bold Italics. Theresult array is
always under Bold regular text, and is always labeled “Result”. Following the result
array al non-empty input data from the MSXDataRec is displayed. This consists of
Date and Time, and the following MSXDatal nfoRec arrays. Open, High, Low, Close,
Vol, Open Interest, and Indicator.

50 « MetaStock External Functions (MSX) MetaStock®

The following menu options allow further manipulation of the result data:

Menu Option |Result
File> Open Saves the spreadsheet to atemporary CSV (comma delimited) file, and
(CTRL+O) launches the application associated by Windows with CSV files
(normally Microsoft Excel).
File> Save As | Savesthe datato aCSV (commadelimited) file. The CSV fileformat is
(CTRL+S) easily imported into most Windows spreadsheet programs. The CSV
extension is normally associated by Windows with Microsoft Excel.
File> Print This option will bring up the following window to control which
(CTRL+P) portions of the spreadsheet are to be sent to the default printer:
— Paper Orientation
— Print Range
oAl
€ Current Page
% Selection
" Page From: m To: H
ITI Cancel |
Edit> Copy This option will copy the selected cells to the Windows clipboard.
(CTRL+C) Select cells by clicking with the left mouse and dragging or by clicking
any row or column header.
Edit> Copy All | Thisoption will copy the entire spreadsheet to the Windows clipboard.
(CTRL+A)
Notes:

« All the spreadsheet menu functions are available by right-clicking the mouse
anywhere on the spreadsheet grid.

e The Format Date/Time checkbox will cause the Date and Time columns to be
formatted as MM/DD/YYYY and MM:SS.TTT rather than YYYYMMDD and
MMSSTTT respectively.

MetaStock®

MetaStock External Functions (MSX) « 51

Stress Testing Your DLL Functions

The DLL Stress Test involves calling your DLL function thousands of times with many
variations in the data arguments. Three types of tests are performed: Max/Min Data
Array Tests, Specia Case Data Array Tests, and Argument Range Tests.

Note: Most of these conditions should not occur in practice. The stress tests ensure that your DLL
can handle extreme conditions without crashing or causing a run-time exception.

Max/Min data array tests

Max/Min data array tests consist of calling your DLL function with all possible
combinations of the following data array setups:

Setup Result

Empty All data arrays are empty.

M ax Dataarrays are either empty or filled with the maximum float value
(FLT_MAX).

Min Dataarraysare either empty or filled with the minimum float value
(FLT_MIN).

NegM ax Data arrays are either empty or filled with the negative maximum
float value.

NegMin Data arrays are either empty or filled with the negative minimum
float value.

Zeros Data arrays are either empty or filled with zeroes (0.0).

Alternating Data arrays are either empty or filled with the following repeating
sequence: FLT_MAX, -FLT_MAX, FLT_MIN, -FLT_MIN, 0.0.

Special Case data array tests
Special case data array tests consist of calling your DLL function with the following

data array setups:
Setup Result
One Element Each data array is set with iFirstValid equal to iLastValid.
[llegal First/Last iFirstValid isless than zero and iLastValid is greater than O.
Unusual Empty iLastValid isless than iFirstValid indicating empty, but they are
set to unusual valuesrather than iFirstValid = 0, iLastValid = -1.
Close GT High Thevaluesin the Close price array are greater than the valuesin the
High data array.
CloseLT Low The valuesin the Close price array are less than the valuesin the
Low data array.
Y 2K The date field in the DateTime structure contains all dates greater
than 20000101.
Y2K Transition The date field in the DateTime structure crosses over from datesin
1999 to 2000.
Invalid Dates Invalid month and day components in the date field.
No Date The date array is zero-filled.
Date Gaps Occasional sequences of zero in the date array.
Date Sequence Dates in date array suddenly jump back in time.
Invalid Times Hour and minute components of time array areillegal.
Timew/o Date Thetime array contains valid data, but the date array is zero-filled.
Random Ticks The ticks component of the time field is set to random non-
contiguous values.
Repeating High Ticks | The ticks component of the timefield is incremented to 999, then
several entries repeat at 999 before the rest of the time changes and
thetick field is reset.

52 « MetaStock External Functions (MSX) MetaStock®

Argument range tests

Argument range tests call your function with each of the built-in data sets, and the
function arguments set as follows:

Setup Result

Numeric fields These are set from 999999999999.00 to -999999999999.00.
The value is modified toward 0.0 by 20% on each call.

Sring fields These are called with empty strings, large strings containing all
typeable characters, and a string of blanks.

Custom fields These are set to all legal values defined by the function,
INT_MIN, and INT_MAX.

Running a Stress Test

When you highlight a function, then select “File> Stress Test...” from the main menu
you will be presented with a dialog box similar to the following:

MSX Stresz Test |
ColdFront bybd oy
Strezs Test Activity

[T Use Large Data Amrays

Cancel |

Click Start to begin the Stress Test.

» A progress bar will indicate test activity, but is not representative of the total number
of teststo be performed. The bar may be fully displayed from one to five times
depending on the number of arguments defined for the function. There will be agreat
deal of disk activity during the test.

« At the conclusion of the Stress Test atext file will be displayed with the test results.
Any function calls that produce a run-time exception or return a value of
MSX_ERROR will be logged in thefile.

« |If the error is afatal-type error, such asillegal memory writes or stack overflow, the
test will be prematurely terminated.

* Min/Max data array test results will include a string indicating which data arrays
contain data and which are empty. For example, the string“0, , ,C,V, ,”
contains data in the Open, Close and Volume data arrays.

* Normally, the Stress Tests are performed with 1000 data points. This allows rapid
testing for initial results or re-testing DLL modifications. Be sure to run the Stress
Testswith the “Use Large Data Arrays’ check box selected at least once before
releasing your DLL. This option uses data arrays with 65500 data points. Large data
arrays significantly slow the stress test, but will help to reveal floating point
overflows and underflows that may be missed by the normal test.

» Theresultsfrom all Stress Tests are stored in afolder named “ Stress’ located
immediately below the folder containing MSXTest . exe. The result file name consists
of the DLL name, Function Name, and “Stress.Txt". For example, the results for
ColdFront.MyMov would be found in the file “ColdFront .MyMov.Stress. Txt".

CAUTION:

Each time a stresstest isrun for a given function, the previous results for that
function will be overwritten.

MetaStock®

MetaStock External Functions (MSX) « 53

Considerations for making sure your functions pass the stress test:

« Your function should never produce a math exception, such as overflow, underflow,
or division by zero. In practice, your function should not receive values that would
cause overflow or underflow conditions to occur, but because your function may
receive as input the output of another external function you must be prepared to
handle extreme values. The supplied template files, MSXTmplt.cpp, MSXTmplt.pas,
and MSXTmplt.bas, contain afunction that forces the passed value to lie within the
minimum and maximum values for a single precision floating point number. If you
perform your floating point cal culations using doubles (double precision floating
point), and then force the resultsinto the required range, you can avoid most overflow
and underflow conditions. See the sample DLLs for examples of using this approach.

 Test the value of the divisor before any mathematical division to avoid division by
zero exceptions.

e Test dl arguments for valid ranges. Return MSX_ERROR in the cases where a
clearly defined argument typeis out of bounds (such as an out-of-range Custom ID).

« Make sure you never access adata array with a negative index.

» Be careful about returning the MSX_ERROR result from your external functions.
When MetaStock encounters that return type it will display an extended error
message in adialog box that will require user response. Report only errorsthat are
significant problems the user needs to know about — not just exceptional situations
your DLL wasn't equipped to handle.

Automating MSXTest From Your IDE

If the compiler IDE you are using supports user-defined tools you may find it useful to
define MSXTest in the tool list. Using the specific IDE tool macros, specify the target
directory of the project as a command line argument for MSXTest. When MSX Test
starts up, it checksits command line arguments for adirectory. If oneisfound, it sets
that directory as the location to search for MSX DLLs.

For example, using Microsoft Visual C++ 6.0, you could define MSXTest as atool by
selecting “ Tools> Customize” from the main menu. Select the “Tools” tab, and click
the “New” icon. Enter MSXTest and press Enter. Fill in the Command field with the
full path to where you installed MSX Test

(e.g. C:\Program Files\Equis\MDK\MSX\MSXTest.exe). Fill inthe"Arguments’
field with “$(TargetDir)”, and leave the “Initial Directory” field blank.

Click “Close”. Now when you select “Tools” from the main menu, you will see
“MSXTest” asan entry. Most other compiler IDEs have similar capabilities.

Refer to your IDE documentation for specifics.

54 « MetaStock External Functions (MSX) MetaStock®

Testing Your DLL With MetaStock

CAUTION:

Note:

Be sure you have fully tested your DLL with the MSXTest program before loading it
with MetaStock.

Totest your MSX DLL with MetaStock, copy it to the “ External Function DLLS’ folder
located below the folder defined for Custom Indicators, System Tests, and Explorations.
If the “External Function DLLS’ folder does not already exist, you must first create it.
(The default location is“C:\Program Files\Equis\MetaStock\External
Function DLLs".)

If you arereplacing an MSX DLL that already existsin the“External Function DLLS’ folder
you must first shut down MetaStock. Because MetaStock loads all available MSX DLLs at
startup, they cannot be deleted or replaced until MetaStock shuts down and releases the
DLLs.

Perform at least the following minimum tests:

» Verify that the correct text appears in the Paste Functions dialog and that the parser is
correctly compiling the syntax for all external functions. Thisincludes the display of
meaningful error messages when a syntax error is detected in the use of an external
function.

» Use Indicator Builder to write a sample indicator that calls afunction in your DLL.

* Plot the indicator and check the values. Make sure that calculation results are
correctly displayed in charts.

 Edit the plot viaright-click.
* Repeat for each functioninthe DLL.

MetaStock®

MetaStock External Functions (MSX) « 55

Programming Guidelines

This section discusses guidelines, limits and other considerations when creating MSX
external functions. All examplesin this section use*C” syntax. The syntax for Delphi
Pascal and PowerBASIC issimilar. Seethe source listings in the “ Sample DLL
Programs’ chapter and included example programs for specific syntax requirements.

Data Storage and Calculations

Data Arrays

All numeric data used within indicator calculationsis stored in structures known as
data arrays. Dataarrays are used to store price data (e.g., Open, High, Low, etc.),
numeric constants, and the results of an indicator calculation. When MetaStock
supplies security price data and numeric argument datato an MSX DLL function, data
arrays are used. When an MSX DLL calculation function returns the results of an
indicator to MetaStock, the result is returned in adata array.

Data array structures are implemented in the MSXDatal nfoRec structure defined on
page 35, and have three basic components:

¢ Data elements.
* First valid index.
e Last valid index.

The data elements are the actual numeric values associated with the data array. These
values are stored in an array of floating point values. Thefirst valid index and last valid
index are used to define which data elements contain valid data. All data elements
between thefirst valid index and the last valid index (inclusive) contain valid data. All
elements outside of this range have undefined values and should be ignored for all
calculations.

A dataarray is considered “empty” if the first valid index is greater than the last valid
index. Empty data arrays are not uncommon and must be handled properly. Typically,
an empty data array will have afirst valid of 0 and alast valid of -1, although any
combination of afirst valid greater than alast valid should be considered empty. Empty
data arrays occur when datais not available. For example, an Open Interest data array
used for a security that does not have Open Interest. Likewise, the result of a 100-
period moving average applied to a security price data array that contains only 90 data
elements would be an empty data array.

First and last valid indexes are very important during indicator calculations.
Calculations should always be restricted to data elements contained within the first
valid/last valid range. Care must be taken to make sure that a data array produced from
the result of a calculation has the correct first valid/last valid settings.

Two important concepts must be understood to correctly set the first valid and last valid

indexes for the returned data array:

» Alwaysrestrict calculations to the union of the valid data ranges of all input data
arrays used.

» Thefirst valid and last valid values of a cal culation result must maintain their position
relative to the values of al input data arrays.

The following example will help to illustrate these concepts.

Assume that an MSX DLL implements afunction that adds three data arrays together
and then calcul ates a three period moving average of the sum. The following statistics
apply to the three data arrays supplied as input to the function:

Data Array 1l:First Valid = 1, Last Valid = 10
Data Array 2:First Valid 3, Last Vvalid 10
Data Array 3:First Valid = 1, Last Valid =7

56 ¢ MetaStock External Functions (MSX) MetaStock®

The data arrays could be visualized as follows:

Record Data Array 1 Data Array 2 Data Array 3
1 3 1
2 2 1
3 2 2 2
4 3 2 2
5 2 3 3
6 1 2 2
7 1 2 1
8 2 2
9 3 1
10 2 1

If the MSX DLL implements the calculationsin two steps, the first step would involve
the adding of the three data arrays to produce atemporary result array. In this case, the
calculation result data array would look like this:

Result Array: Firs Vaid=3 LastVaid=7

Record Result Array
1
2
3 6
4 7
5 8
6 5
7 4
8
9
10

Notice how the resulting array hasfirst and last valid set to the union of dl three of the
input dataarrays. Also note how each element of the result array maintainsits position
relative to the data elements used to calculate the result (the sum of al #3 dataelementsis
stored in the #3 element of the resulting array). Thisisavery important concept and must
be used in the calculation of all indicatorsin an MSX DLL. By correctly setting the first
and last valid indexes, you will allow MetaStock to correctly determine where the
indicator plot should start and end in relation to the data used for input into the indicator.
If the MSX DLL applies the three-period moving average to the result array above, the
final result would look like this:

Final Result: Firs Vaid=5 LastVaid=7

Record |Final Result Array

1

2

3

4

5 7
6 6.67
7 5.67
8

9

10

Notice that the final array hasthefirst valid set to 5. Thisis because the 3-period
moving average does not come up to speed until the third element of the data on which

MetaStock® MetaStock External Functions (MSX) « 57

itisapplied. Sincetheinput array had afirst valid of 3, the 3-period moving average
did not come up to speed until the fifth data element. Again, the last valid value is set
to 7 because the input data array had alast valid of 7.

Security Price Data

When MetaStock callsacalculation functioninan MSX DLL, it automatically givesthe
DLL accessto security price data. The DLL does not have to explicitly declare an
argument in the external function for accessto the security data. This meansthat evenif
an external function has no arguments, the calculation functionsin the DLL will till be
given security price and detail datato work with.
MSX DLL calculation « AnMSX DLL calculation function has no way of knowing which type of formula
function (e.g., Custom Indicator, System Te<t, etc.) iscaling the externa function. The external
function calculation process only knowsthat it is given a set of data arraysthat define
the price datafor the target security. The external calculation function simply performs
the appropriate calculations and returns the resulting data array to M etaStock.
MSXDataRec structure * MetaStock uses the MSXDataRec structure (page 36) to supply security price and
detail datato an MSX DLL.

* Inthe case of an external function used in an Indicator, the MSXDataRec structure
will contain the price and detail datafor the base security of the chart where the custom
indicator is being calculated.
» For System Tests, the structure is loaded with base security data for the active
chart when the system test was launched.
« For Explorations, the structure is loaded with security data for the security
currently being explored.
 For Experts, the structure is loaded with the base security data for the chart
where the expert is attached.

» The MSXDataRec structure contains seven data arrays stored in MSXDatal nfoRec
structures (page 35). These data arrays store al relevant price datafor the security.
Some of these arrays may be empty (see the discussion of empty dataarraysin the
MSXDatal nfoRec section (page 35) if the security does not have datafor that pricefield.

 Also contained in the MSXDataRec structure isa pointer to an array of MSXDateTime
structures. Thisarray contains date and time information for each data point. If a
calculation function needs to access the date and time for the Nth bar of the security,
it would reference the Nth element of the psDate array. Note that thisis not a data
array like the sHigh, sLow, etc.
sind data array ¢ Thedataarray sind contains datafor a user-selected indicator. In the case of a Custom
Indicator this dataarray will contain the value for the chart object on which theindicator
was dropped. For System Tests and Explorations, this array contains the selected plot
(if there isone) of the active chart when the system Test or Exploration was started. For
Experts, thisarray contains the selected plot (if thereisone) of the chart when the
Expert was attached. Inall cases, if no plot is selected the sind data array will be empty.
» Notice that the location of the datain these arraysis synchronized. The Nth element
of each array corresponds to the same time frame.
sClose data array ¢ The sClose data array always contains the maximum data points. All other data
arrayswill contain equal to or less than the value of sClose.iLastValid.
iFirstvalid, iLastValid TheiFirstValid and iLastValid settings in the sClose data array are significant.
settings Typically the number of data elementsin this data array defines the maximum
number of data elements stored in the other price arrays. Thisisimportant for
determining the number of valid elements contained in the psDate array. For
example, if the sClose.iFirstValid field contains 100 and the sClose.iLastValid field
contains 200, you can be certain that the psDate array contains valid data at
psDate] 100] through psDate] 200] .

Note: After acalculation is performed, the a_psResultRec->psResultArray’siLastValid should
never be greater than the iLastValid value of the sClose data array.

58 « MetaStock External Functions (MSX) MetaStock®

e TheiFirstValid and iLastValid of sClose should be used to determine how much
storage is available for all dataarrays. All arrays have enough memory allocated to
store up to sClose.iLastValid data points. Data returned in a_psResultRec->
psResultArray from an MSX DLL must keep within these same storage constraints.

Note: The a_psResultRec->psResultArray data array returned from an MSX DLL must never
have an iFirstValid that is less than sClose.iFirstValid. The a_psResultRec->
psResultArray data array returned from an MSX DLL must never have anilLastValid that is
greater than sClose.iLastValid.

Things to Remember

« Calculation functions must never modify any incoming arguments, with the exception
of the result record (a_psResultRec). Incoming arguments are defined as ‘ const’,
where possible, in the provided templates to help ensure that no illegal modifications
take place.

» Besureto set a_psResultRec->psResultArray->iFirstValid and
a_psResultRec->psResultArray->iLastValid in the returned MSXResultRec before
returning from your function.

« If your function is returning MSX_ERROR indicating an internal error, be sure to
copy an extended string message describing the cause of the error to
a_psResultRec-> pszExtendedError.

Make sure your message string does not exceed MSX_MAXSTRING bytes.

* Never set a_psResultRec->psResultArray->iFirstValid less than sClose.iFirstValid.

* Never set a_psResultRec->psResultArray->iLastValid greater than
sClose.iLastValid. Writing to a_psResultRec->psResultArray-> pfValue beyond the
value of sClose.iLastValid will corrupt MetaStock’ s heap.

» Besureto check theiFirstValid and iLastValid of any MSXDatal nfoRec arguments or
a_psDataRec members you intend to use. Never assume that datawill be availablein
any dataarray. If datais not available for your function to process, set
a_psResultRec->psResultArray->iFirstValid to 0 and a_psResultRec->
psResultArray->iLastValid to —1 to indicate that thereis no valid datain the returning
array. This method allows processing to continue in the most robust way possible.

User Interface Restrictions

While an MSX DLL calculation function is active, al other formula processing in
MetaStock is suspended. For thisreason, an MSX DLL must NOT, under any
circumstances, request user input through message boxes or dialogs. Thisincludesthe
reporting of error conditions.

Usersroutinely leave MetaStock running for extended periods unattended.

MSX DLLs cannot assume that a user is available to respond to a message of any kind.
MSX DLLs must refrain from implementing any user interface.

MetaStock® MetaStock External Functions (MSX) « 59

Tech Note 1 — Using MSFL in an MSX DLL

If you use MSFL callsfrom your MSX DLL, there are afew issues you must consider.

» MetaStock loads and initializes the release version of the MSFL DLL at startup. If your
MSX DLL isaso using the release version of MSFL, it must not call MSFL1 Initialize
(page 115). MSFL’sinitialization routine should be called only once during the lifetime of
an application. If your MSX DLL callsMSFL1 Shutdown (page 124), then
MSFL1 Initialize, the MSFL operations that MetaStock is performing will be corrupted.
Again, thisisonly if your MSX DLL is using the release version of the MSFL DLL.

« If your MSX DLL uses the debug version of the MSFL DLL that was shipped with the
MDK, you will need to call MSFL1 _Initialize once from within your MSX DLL, and
you will also need to call MSFL1_Shutdown when your MSX DLL is unloaded.

» The recommended approach isto make your MSX DLL respond correctly under both
conditions by calling MSFL1 GetMSFLSate (page 107) to determineif the MSFL DLL
your MSX DLL usesisaready loaded and initialized.

If MSFL1_GetMSFLSatereturns MSFL_STATE_INITIALIZED, your MSX DLL is
using the same MSFL DLL as MetaStock. If MSFL1 GetMSFLSate returns
MSFL_STATE _UNINITALIZED, your MSX DLL isusing adifferent version of the
MSFL DLL, and it must beinitialized viaacall to MSFL1_Initialize. If thisisthe case, set
aflaginyour MSX DLL code that can be checked during the DLLMain’s
DLL_PROCESS DETACH logic that will indicate that MSFL1_Shutdown is required.

Note: The MSFL1 GetMS-LSate logic cannot be performed during the DLLMain
DLL_PROCESS ATTACH, as MetaStock loads all MSX DLLsbeforeit initializesthe
MSFL DLL. If your MSX DLL initidizesthe release version of MSFL before MetaStock getsa
chance to, MetaStock will fail to load. Make the check from somewhere inside one of your
exported user functions, setting aflag to ensure that the Initialize call is not made more than once.

« If you plan to distribute your MSX DLL (containing MSFL logic) to other MetaStock
users:

« Other MetaStock users must have the same version of the MSFL DLL that your
MSX DLL isexpecting to use. It is essential that your MSX DLL referencesthe
release build of MSFL if your MSX DLL will be executed by another MetaStock
user. The debug version of MSFL DLL will (almost certainly) not be present on
their system.

« Realize that this approach may require a new version of your MSX DLL for each
new version of MSFL that may be released in the future. For example, as of this
writing, the current version of MSFL isMSFL72.DLL. If afuture version of
MetaStock is shipped with MSFL73.DLL, your MSX DLL will not find the
MSFL72.DLL it expects, and will fail to load.

» The recommended approach is to update your MSX DLL with each release of a
new version of MSFL. This approach will ensure that your MSX DLL istested with
each new release, and that it will not attempt to load an untested version of the
MSFL DLL.

» An alternative approach isto dynamically load the MSFL library viathe
“LoadLibrary” system call, and then resolve each MSFL function you use viathe
“GetProcAddress’ system call. Thiswill allow you to make aminimal change to your
MSX DLL to maintain compatibility with future M SFL releases. Attempt to load the
most recent MSFL DLL first. If that fails, attempt to load the next most recent, etc.
Your DLL must have a method of obtaining the current MSFL DLL name. Y ou can
hard-code the names of all the potential MSFL DL L sthat may be present, retrieve the
names from an external file that you can provide or document for your user to
maintain, or search thewindows system folder for “MSFL*.DLL" files. Searching for
thefile namein the system folder carriesthe potential risk of eventually encountering
afuture version of the MSFL DLL that isincompatible with older MetaStock files.
In that case, your MSX DLL would fail to load or to operate correctly.

60 « MetaStock External Functions (MSX) MetaStock®

MSX Index

A

Argument range tests 53

B

Borland C++ 5.0
Creatingan MSX DLL 43
Debugging an MSX DLL 46

Borland C++ Builder 4.0
Creatingan MSX DLL 41
Debuggingan MSX DLL 46

Borland Delphi Pascal
Creatingan MSX DLL 43
Debugging an MSX DLL 46

C

C
Creating an MSX DLL 40, 41, 43
Debugging an MSX DLL 45, 46
Cadlculation Functions 30
Calculation Structures 35

MSXDatal nfoRec 35
MSXDataRec 36
MSXDateTime 35

custom strings, and partial matches 34

D

Data

Data Array 56
Price Data 58
Sample 48
Types 31

data array
Argument range 53
tests

Max/Min 52

Special Case 52
Data Types 31

Dates 31
Strings 31
Times 31
distributing your MSX DLL 60

E
ExtFml 26, 32, 34

F

Function Argument Structures 38

MSXCustomArgsArray 39
MSXDatal nfoRecArgsArray 38
MSXNumericArgsArray 39
MSXResultRec 39

MSX StringArgsArray 39

H
Help 26

iFirstvValid 30, 35

defined 35
iFirstValid setting 58
iLastValid 30, 35

defined 35
iLastValid setting 58
iLastValue indexes 30
Initialization Functions 27

MSXInfo 27
MSXNthArg 28

M SXNthCustomString 29
MSXNthFunction 28

Initialization Structures 32

MSXDLLDef 32
MSXFuncArgDef 33

M SXFuncCustomString 34
MSXFuncDef 32

L
ITime 35

M

Max/Min data array tests 52
MetaStock External Function (MSX) defined 25
Microsoft Visual C++

Creatingan MSX DLL 40
Debugging an MSX DLL 45

MSFL, usinginan MSX DLL 60
MSX DLL, distributing 60
MSX_ERROR 39
MSX_MAXARGS 33, 38
MSX_MAXSTRING 32
MSX_MAXSTRING, defined 31
MSX_VERSION 32

MSXCustom 34

M SX CustomArgsArray structure 39
MSXDatal nfoRec 36

M SX DatalnfoRec structure 35

M SX DatalnfoRecArgsArray structure 38
MSXDataRec 35

MSXDataRec structure 58

described 36
MSXDateTime 35, 36

MSXDLLDef structure 27

M SXFuncArgDef data structure 29

M SX FuncCustomString data structure 29
MSXFuncDef data structure 28

61 » MetaStock External Functions (MSX)

MetaStock®

MSXNthCustomString 34

M SXNumeric arguments 38
MSXNumericArgsArray argument array 38
MSXNumericArgsArray structure 39

M SXResultRec structure 39
MSXStringArgsArray structure 39
MSXStruc.bas 32

MSX Struc.pas 32

P

partial match on custom strings 34
PowerBASIC

Creatingan MSX DLL 44
Debugging an MSX DLL 47

Programming Considerations
Ul Restrictions 59

S

sClose data array 58

sInd structure 36

Specia Case data array tests 52
strings, and partial matches 34

T

Tech Notes

Using MSFL inan MSX DLL 60
Technical support 26
Testing

MSXTest 48

Stress Testing 52
Testing your DLL with MetaStock 55

V

Variable Notation 31
Visual Basic 25

w

Win32 43
Win32DLL 25

62 « MetaStock External Functions (MSX)

MetaStock®

Sample DLL Programs

The following three programs demonstrate complete source code for implementing a

moving average in C, Delphi Pascal, and PowerBASIC/DLL.

“C” Example

//
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "MSXStruc.h"

// we don"t want C++ name-mangling
#ifdef _ cplusplus

extern "C" {

#endif

BOOL __ stdcall MSXInfo (MSXDLLDef *a_psDLLDef)

// copy in your copyright information...

strncpy (a_psDLLDef->szCopyright, "Copyright (c) ColdFront Logic, Inc., 2000",

sizeof (a_psDLLDef->szCopyright)-1);
a_psDLLDef->iNFuncs = 1; // One calculation function;
a_psDLLDef->iVersion = MSX_VERSION;
return MSX_SUCCESS;

BOOL __ stdcall MSXNthFunction (int a_iNthFunc, MSXFuncDef *a_psFuncDef)
{ BOOL 1_bRtrn = MSX_SUCCESS;
switch (a_iNthFunc)
case 0: // a iNthFunc is zero-based
strcpy (a_psFuncDef->szFunctionName, "‘MyMov'");

strcpy (a_psFuncDef->szFunctionDescription, My Moving Average™);
a_psFuncDef->iNArguments = 3; // 3 arguments: data array, periods, method

break;
default:
I_bRtrn = MSX_ERROR;
break;
by
return 1_bRtrn;
}
/)~

BOOL __stdcall MSXNthArg (int a_iNthFunc, int a_iNthArg,
MSXFuncArgDef *a_psFuncArgDef)
{

BOOL I _bRtrn = MSX_SUCCESS;
a_psFuncArgDef->iNCustomStrings = O;

switch (a_iNthFunc)

case O:
switch (a_iNthArg)
{

MetaStock®

Sample DLL Programs « 63

case O:
a_psFuncArgDef->iArgType = MSXDataArray; // data array
strcpy (a_psFuncArgDef->szArgName, "'DataArray');
break;

case 1:
a_psFuncArgDef->iArgType = MSXNumeric; // Numeric
strcpy (a_psFuncArgDef->szArgName, "Period™);
break;

case 2:
a_psFuncArgDef->iArgType = MSXCustom; // CustomType
a_psFuncArgDef->iNCustomStrings = 4;
strcpy (a_psFuncArgDef->szArgName, '‘Method™);
break;

default:
I_bRtrn = MSX_ERROR;
break;

break;

default:
I_bRtrn = MSX_ERROR;
break;

by
return 1_bRtrn;

BOOL __stdcall MSXNthCustomString (int a_iNthFunc, int a_iNthArg,
int a_iNthString,
MSXFuncCustomString *a_psCustomString)

{
BOOL I_bRtrn = MSX_SUCCESS;

typedef struct

char *szString;
int ilD;
} LocalStringElement;

LocalStringElement 1_sTheStrings[] =

{"Simple”, 0}, {"S", 0},
{"Weighted"”,1}, {"w", 1}

switch (a_iNthFunc)

case 0O:
switch (a_iNthArg)

case 2:
if(a_iNthString >= 0 && a_iNthString < NMyMovCustStrings)

strncpy (a_psCustomString->szString,
1_sTheStrings[a_iNthString].szString,
MSX_MAXSTRING-1);
a_psCustomString->ilD = 1_sTheStrings[a_iNthString].ilD;

break;

default:
I_bRtrn = MSX_ERROR;
break;

break;

default:
I_bRtrn = MSX_ERROR;
break;

by
return 1_bRtrn;

// R T o o S R e e S S S S R S S S S R S S S o S S S R S S S S o S S S R S S S R S S S S S S e e

// This local utility function is used to help ensure that no overflows
// or underflows will occur during calculations. The MSXTest program
// Stress Test function will call your DLL with a wide range of values,
// including positive and negative values of FLT_MAX and FLT_MIN.

// Perform all intermediate calculations using doubles and then force the

64 « Sample DLL Programs MetaStock ®

// results into the range of a float.

// AEAAAAAAAAAAAAAAAAAAAAXAAAAAAAAXAAAAAAXAAXAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAANX
#define MSXMax(a,b) (((@) > (®)) ? (@) : (b))
#define MSXMin(a,b) (((@) < (b)) ? (@) : (b))
double ForceFloatRange (double a_IfDbl)
{
if (a_IfDbl > 0.0)

a_IfDbl = MSXMin (a_IfDbl, double(FLT_MAX)); // force pos num <= FLT_MAX
a_IfDbl = MSXMax (a_IfDbl, double(FLT _MIN)); // force pos num >= FLT_MIN

else
if (a_IfDbl < 0.0)
a_IfDbl = MSXMax (a_IfDbl, double(-FLT_MAX)); // force neg num >= -FLT_MAX

a_lfDbl = MSXMin (a_1fDbl, double(-FLT_MIN)); // force neg num <= -FLT_MIN
by

return a_IfDbl;

// This is an example of a local function used for calculations. This
// one calculates a moving average on the source data array, and puts

// the results in the result array. It differentiates its processing
// based on whether the moving average is to be weighted or not.
Y

void MovingAverage (const MSXDatalnfoRec *a_psSrc, MSXDatalnfoRec *a_ psRslt,
int a_iPeriod, BOOL a_blsWeighted)
{

int lI_ilndex = a_psSrc->iFirstvValid;
int 1_iMaxIndex = a_psSrc->ilLastValid;
double 1_IfSum = 0.0;

double 1_IfDivisor;

int i;

ifT (a_blsWeighted)

// sum of the digits formula

1_IfDivisor = double(a_iPeriod) * (double(a_iPeriod)+1.0) / 2.0;
else

1_IfDivisor = double(a_iPeriod);
while ((I_ilndex + a_iPeriod - 1) <= l_iMaxIndex)

{
1_1fSum = 0.0;
for (i=0; i<a_iPeriod; i++) {
if (a_blsWeighted)
1_IfSum += a_psSrc->pfValue[l_ilndex+i] * (i + 1.0); // weighted
else
1_IfSum += a_psSrc->pfvalue[l_ilndex+i]; // simple
I_1TSum = ForceFloatRange (I_IfSum);

a_psRslt->pfVvalue[l_ilndex + a_iPeriod - 1] =
float (ForceFloatRange(l_IfSum / 1_IfDivisor));
1_ilndex++;

a_psRslt->iFirstvalid = a_psSrc->iFirstvalid + a_iPeriod - 1;
a_psRslt->iLastValid = I_iMaxIndex;

// The following function demonstrates use of three argument types:

// NMSXDataArray, MSXNumeric and MSXCustom.

// A MovingAverage is calculated on the input DataArray for input Periods.
// Two moving average methods are available, specified by the Custom ID.

BOOL __ stdcall MyMov (const MSXDataRec *a_psDataRec,
const MSXDatalnfoRecArgsArray *a_psDatalnfoArgs,
const MSXNumericArgsArray *a_psNumericArgs,
const MSXStringArgsArray *a_psStringArgs,
const MSXCustomArgsArray *a_psCustomArgs,
MSXResultRec *a_psResultRec)

{

MetaStock® Sample DLL Programs

BOOL I_bRtrn = MSX_SUCCESS;

// We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom, in that order

// The arguments will be found at:
// DataArray: a_psDatalnfoArgs[0]

// Numeric : a_psNumericArgs->fNumerics[O0];

// Custom : a_psCustomArgs->iCustomlDs[0];

const MSXDatalnfoRec *l1_psData;

int 1_iPeriod;

int 1_iMethod;

int 1_ilndex;

int 1_iMaxIndex;

iT (a_psDatalnfoArgs->iNRecs == 1 &&
a_psNumericArgs->iNRecs == 1 &&
a_psCustomArgs->iNRecs == 1)

I_psData = a_psDatalnfoArgs->psDatalnfoRecs[0];

I_iPeriod = int(a_psNumericArgs->fNumerics[0]); // truncate
1_iMethod = a_psCustomArgs->iCustomIDs[0];

I_ilndex = 1_psData->iFirstvalid;

I_iMaxIndex = 1_psData->ilLastValid;

it (I_iPeriod > 0 & (I_ilndex + I_iPeriod - 1) <= l_iMaxIndex)
{
switch (1_iMethod)

{
case 0: // Simple
case 1: // Weighted

MovingAverage (l_psData, a_psResultRec->psResultArray, 1 _iPeriod,

break;

default:
strncpy (a_psResultRec->szExtendedError, “Invalid method”,

sizeof(a_psResultRec- >szExtendedError) 1);

a_psResultRec->psResul tArray->iFirstvalid =
a_psResultRec->psResultArray->iLastValid =
I_bRtrn = MSX_ERROR;
break;

s
T
else

a_psResultRec->psResul tArray->iFirstvalid = 0O;
a_psResultRec->psResultArray->iLastvalid = -1;

return 1_bRtrn;

#ifdef _ _cplusplus
}
#endif

//
This is the DEF file (ColdFront.DEF) for the above example:

LIBRARY
DESCRIPTION “MSX External Functions.’
EXPORTS

MSXInfo

MSXNthFunction

MSXNthArg

MSXNthCustomString

MyMov

1_iMethod);

66 ¢ Sample DLL Programs

MetaStock®

Delphi Pascal Example
library DelphiSampleDLL; // Causes a .DLL file to be built

Uses SysUtils, // Brings in szString funcs and exception trapping
Math; // Brings in various math functions
{$1 MSXStruc.inc} // Include the MSX datastructure definitions

function MSXInfo (var a_psDLLDef: MSXDLLDef): LongBool; stdcall;
begin
StrLCopy (a_psDLLDef.szCopyright, "Copyright (c) FantasticFuncs, 2000,
MSX_MAXSTRING-1);
a_psDLLDef.iNFuncs := 1;
a_psDLLDef.iVersion := MSX_VERSION;
MSXInfo := MSX_SUCCESS;
end;

function MSXNthFunction (a_iNthFunc: Integer;
var a_psFuncDef: MSXFuncDef): LongBool; stdcall;
var 1_bRtrn : LongBool;
begin
I_bRtrn := MSX_SUCCESS;
case a_iNthFunc of
0: begin
StrCopy(a_psFuncDef._szFunctionName, “MyMov*®);
StrCopy(a_psFuncDef.szFunctionDescription, "My Moving Average®);
a_psFuncDef.iNArguments := 3; // 3 arguments: data array, periods, method
end;
else
I_bRtrn := MSX_ERROR;
end;
MSXNthFunction := 1_bRtrn;
end;

function MSXNthArg(a_iNthFunc: Integer; a_iNthArg: Integer;
var a_psFuncArgDef: MSXFuncArgDef): LongBool; stdcall;
var 1_bRtrn : LongBool;
begin
I_bRtrn := MSX_SUCCESS;
case a_iNthFunc of

0:
case a_iNthArg of
0: begin
a_psFuncArgDef. iArgType := MSXDataArray;
StrCopy(a_psFuncArgDef_szArgName, "DataArray”);
end;
1: begin
a_psFuncArgDef.iArgType := MSXNumeric;
StrCopy(a_psFuncArgDef_szArgName, "Period®);
end;
2: begin
a_psFuncArgDef.iArgType := MSXCustom;
StrCopy(a_psFuncArgDef_szArgName, “Method®);
a_psFuncArgDef. iNCustomStrings := 4;
end;
else
I_bRtrn := MSX_ERROR;
end;
else
I_bRtrn := MSX_ERROR;
end;
MSXNthArg := 1_bRtrn;
end;

function MSXNthCustomString(a_iNthFunc: Integer;
a_iNthArg: Integer;
a_iNthString: Integer;
var a_psCustomString: MSXFuncCustomString):LongBool;
stdcall;
var 1_bRtrn : LongBool;
begin
I_bRtrn := MSX_SUCCESS;

case a_iNthFunc of
0:

MetaStock® Sample DLL Programs « 67

case a_iNthArg of
2.

// see MSXTmplt.pas to see an alternative to the nested
// switch used below
case a_iNthString of
0: begin
StrCopy(a_psCustomString.szString, "Simple®);
a_psCustomString.ilD := 0;
end;
1: begin
StrCopy(a_psCustomString.szString, "S");
a_psCustomString.ilD := 0;
end;
2: begin
StrCopy(a_psCustomString.szString, “"Weighted®);
a_psCustomString.ilD := 1;
end;
3: begin
StrCopy(a_psCustomString.szString, "W®);
a_psCustomString.ilD := 1;
end;
else
1_bRtrn := MSX_ERROR;
end;
else
I_bRtrn := MSX_ERROR;
end;
else
I_bRtrn := MSX_ERROR;
end;
MSXNthCustomString := 1_bRtrn;
end;

// *

// This local utility function is used to help ensure that no overflows
// or underflows will occur during calculations. The MSXTest program
// Stress Test function will call your DLL with a wide range of values,
// including positive and negative values of MaxSingle and MinSingle.
// Perform all intermediate calculations using Doubles and then force the
// results into the range of a Single.

/ R T o o S S R R e e S S S R S R S S S S R S S S o S S S S S S S S R S S S S S S S S S e e

function ForceSingleRange (a_IfDbl:Double) : Double;
begin
if (a_IfDbl > 0.0) then
begin
if (a_IfDbl > MaxSingle) then
a_IfDbl := MaxSingle
else
it (a_IfDbl < MinSingle) then
a_IfDbl := MinSingle;
end
else
if (a_IfDbl < 0.0) then
begin
1T (a_IfDbl < -MaxSingle) then
a_IfdDbl := -MaxSingle
else
if (a_IfDbl > -MinSingle) then
a_IfDbl := -MinSingle;
end;
ForceSingleRange := a_IfDbl;
end;

//n *

*

// This is an example of a local procedure used for calculations. This one

// calculates a simple moving average on the source data array, and puts the
// results in the result array.
// * *x
procedure SimpleMovingAverage (const a_psSrc: PMSXDatalnfoRec;
var a_psResult: MSXDatalnfoRec;
68 ¢ Sample DLL Programs MetaStock ®

a_iPeriod : Integer);

var 1_ilndex : Integer;
I_iMaxIndex: Integer;
I_1fSum : Double;
i : Integer;
begin
lI_ilndex := a psSrc.iFirstvalid;
1_iMaxIndex := a psSrc.ilLastValid;

I_IfSum := 0.0;

for i:= 0 to a_iPeriod-1 do
1_I1fSum := ForceSingleRange(l_IfSum + a_psSrc.pfValue[l_ilndex+i]);
1_IfSum := ForceSingleRange (1_IfSum);
lI_ilndex = 1_ilndex + a_iPeriod - 1;
while I_ilndex <= l_iMaxIndex do
begin
a_psResult.pfvalue[l_ilndex] := ForceSingleRange(l_IfSum / a_iPeriod);
I_ilndex = 1_ilndex + 1;
I_1fSum := L_IfSum - a_psSrc.pfvalue[l_ilndex-a_iPeriod];
if 1_ilndex <= I_iMaxIndex then
1_IfSum := ForceSingleRange(1_IfSum + a_psSrc.pfValue[l_ilndex]);

end;
a_psResult.iFirstvalid := a psSrc.iFirstvalid + (a_iPeriod - 1);
a_psResult.iLastValid := 1_iMaxIndex;
end;

/ R T o o S S R S o o o R R R R S S e R L S S T S R S S S R S R S T S S R R S R R R o S e

// This is an example of a local procedure used for calculations. This one
// calculates a weighted moving average on the source data array, and puts the
// results in the result array.

//***

procedure WeightedMovingAverage (const a psSrc: PMSXDatalnfoRec;
var a_psResult: MSXDatalnfoRec;

a_iPeriod : Integer);
var 1_ilndex : Integer;
I_iMaxIndex: Integer;
I_1fSum : Double;
I_IfDivisor: Double;
I : Integer;
begin
lI_ilndex = a_psSrc.iFirstvalid;
lI_iMaxIndex := a _psSrc.ilLastValid;

// Sum of Digits formula
I_IfDivisor := ForceSingleRange(a_iPeriod * (a_iPeriod+1.0) /7 2.0);

while ((L_ilndex + a_iPeriod - 1) <= l_iMaxIndex) do

begin
I_1fSum = 0.0;
for i := 0 to a_iPeriod-1 do
1_IfSum := ForceSingleRange(1_IfSum + a_psSrc.pfValue[l_ilndex+i] *

(i +1.0));
a_psResult.pfValue[l_ilndex + a_iPeriod - 1] :=
ForceSingleRange(1_IfSum / 1_IfDivisor);

I_ilndex = L_ilndex + 1;
end;
a_psResult.iFirstvalid := a psSrc.iFirstvalid + a_iPeriod - 1;
a_psResult.iLastValid := 1_iMaxIndex;
end;
/) —— e —————————

// The following function demonstrates the use of three argument types:

// NMSXDataArray, MSXNumeric and MSXCustom.

// A Moving Average is calculated on the input DataArray for input Periods.
// Two moving average methods are available, specified the the Custom ID.

S

function MyMov (const a_psDataRec: PMSXDataRec;
const a_psDatalnfoArgs: PMSXDatalnfoRecArgsArray;
const a_psNumericArgs: PMSXNumericArgsArray;
const a_psStringArgs: PMSXStringArgsArray;
const a_psCustomArgs: PMSXCustomArgsArray;
var a_psResultRec: MSXResultRec): LongBool; stdcall;

var 1_bRtrn : LongBool;

MetaStock® Sample DLL Programs « 69

I_psData : PMSXDatalnfoRec;

I_iPeriod : Integer;
I_iMethod : Integer;
1 _ilndex : Integer;

I_iMaxIndex: Integer;
I_sTmpRec : MSXDatalnfoRec;
begin

// We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom.

// The arguments will be found at:

// DataArray: a_psbDatalnfoArgs->psDatalnfoRecs[0]

// Numeric : a_psNumericArgs->fNumerics[0]

// Custom : a_psCustomArgs->iCustomlIDs[0]

iT ((a_psbhatalnfoArgs.iNRecs = 1) and
(a_psNumericArgs.iNRecs = 1) and
(a_psCustomArgs. iNRecs = 1)) then

begin

I_bRtrn := MSX_SUCCESS;
I_psData := a_psDatalnfoArgs.psDatalnfoRecs[0];
I_iPeriod := Trunc (a_psNumericArgs.fNumerics[0]);
I_iMethod := a_ psCustomArgs. iCustomIDs[0];
I_ilndex := 1| _psData.iFirstvalid;
I_iMaxIndex := I_psData.ilLastValid;

if (I_iPeriod > 0) and ((I_ilndex + I_iPeriod - 1) <= I_iMaxIndex) then

case l_iMethod of
0: SimpleMovingAverage (l_psData, a_psResultRec.psResultArray”,
1_iPeriod);
2: WeightedMovingAverage (l_psData, a_psResultRec.psResultArray”,
1_iPeriod);
else
begin
StrLCopy(a_psResultRec->szExtendedError, “Invalid method”,
MSX_MAXSTRING-1);
I_bRtrn := MSX_ERROR;
end
end
else
begin
a_psResultRec.psResultArray.iFirstvalid := 1;
a_psResultRec.psResultArray.ilLastValid := 0;
end
end
else // wrong number of arguments passed!
begin
StrLCopy (a_psResultRec.szExtendedError,
"Incorrect number of arguments”,
MSX_MAXSTRING-1);
I_bRtrn := MSX_ERROR;
end;

it (1_bRtrn <> MSX_SUCCESS) then
begin
a_psResultRec.psResultArray. iFirstvalid := 0;
a_psResultRec.psResultArray.ilLastvalid = -1;
end;

MyMov := 1_bRtrn;
end;

exports

MSXInfo,
MSXNthFunction,
MSXNthArg,
MSXNthCustomString,
MyMov ;

begin

end.

70 « Sample DLL Programs

MetaStock®

PowerBASIC/DLL Example

#COMPILE DLL " create a dll

OPTION EXPLICIT " require all variables to be declared
#INCLUDE ""WIN32API.INC" " required equates and windows prototypes
#INCLUDE '"'MSXStruc.BAS™" " MSX Data Structures

FUNCTION MSXInfo SDECL ALIAS "MSXInfo" (a_psDLLDef AS MSXDLLDef PTR) _
EXPORT AS LONG
copy in your copyright information...
@a_psDLLDef.szCopyright = "Copyright (c) PBDemo Inc., 2000"
" Set the number of functions we are exporting
@a_psDLLDef.iNFuncs = 1 " One calculation function
@a_psDLLDef.iVersion = %MSX_VERSION
MSXInfo = %MSX_SUCCESS
END FUNCTION

FUNCTION MSXNthFunction SDECL ALIAS "MSXNthFunction™ (_
BYVAL a_iNthFunc AS LONG, _
a_psFuncDef AS MSXFuncDef PTR) EXPORT AS LONG

MSXNthFunction = %MSX_SUCCESS

SELECT CASE a_iNthFunc

CASE 0 " a_iNthFunc is zero-based
@a_psFuncDef.szFunctionName = *""MyMov"'
@a_psFuncDef.szFunctionDescription = "My Moving Average"
" 3 arguments: data array, periods, method
@a_psFuncDef. iNArguments = 3

CASE ELSE
MSXNthFunction = %MSX_ERROR

END SELECT

END FUNCTION

FUNCTION MSXNthArg SDECL ALIAS "MSXNthArg"™ (_
BYVAL a_iNthFunc AS LONG,
BYVAL a_iNthArg AS LONG, _
a_psFuncArgbDef AS MSXFuncArgDef PTR) EXPORT AS LONG

MSXNthArg = %MSX_SUCCESS
@a_psFuncArgDef. iNCustomStrings = 0

SELECT CASE a_iNthFunc
CASE 0
SELECT CASE a_iNthArg
CASE 0
@a_psFuncArgDef. iArgType = %MSXDataArray " DataArray;
@a_psFuncArgDef.szArgName = "DataArray"

CASE 1
@a_psFuncArgDef . iArgType = %MSXNumeric " Numeric
@a_psFuncArgDef.szArgName = "Period"

CASE 2

@a_psFuncArgDef. iArgType = %MSXCustom * CustomType
@a_psFuncArgDef. iNCustomStrings = 4
@a_psFuncArgDef.szArgName = *‘Method"
CASE ELSE
MSXNthArg = %MSX_ERROR
END SELECT
CASE ELSE
MSXNthArg = %MSX_ERROR
END SELECT
END FUNCTION

FUNCTION MSXNthCustomString SDECL ALIAS "MSXNthCustomString" (_
BYVAL a_iNthFunc AS LONG, _
BYVAL a_iNthArg AS LONG, _
BYVAL a_iNthString AS LONG, _
a_psCustomString AS MSXFuncCustomString PTR) EXPORT AS LONG

MSXNthCustomString = %MSX_SUCCESS
@a_psCustomString.szString = "'
@a_psCustomString.-ilD = -1

MetaStock® Sample DLL Programs « 71

SELECT CASE a_iNthFunc
CASE 0O
SELECT CASE a_iNthArg
CASE 2
SELECT CASE a_iNthString
CASE O
@a_psCustomString. szString = "Simple”
@a_| psCustomStrlng ilD=0
CASE
@a_psCustomStrlng szString =
@a_psCustomString.-ilD = 0
CASE 2
@a_psCustomString. szString = "Weighted"
@a_| psCustomStrlng ilD =1
CASE

I
@

@a_psCustomStrlng szString = "W"
@a_psCustomString.ilD = 1
CASE ELSE
MSXNthCustomString = %MSX_ERROR
END SELECT
CASE ELSE
MSXNthCustomString = %MSX_ERROR
END SELECT
CASE ELSE
MSXNthCustomString = %MSX_ERROR
END SELECT

END FUNCTION

* *

" This local utility function is used to help ensure that no overflows

" or underflows will occur during calculations. The MSXTest program

" Stress Test function will call your DLL with a wide range of values,
" including positive and negative values of FLT _MAX AND FLT_MIN.

" Perform all intermediate calculations using doubles and then force the
" results into the range of a single.

R o o o o R o e e R R S S S o S S S S S T o S S S S S S S e T e S S S S S S S S S S R S S S e e

FUNCTION ForceFloatRange (BYVAL a_IfDbl AS DOUBLE) AS DOUBLE
LOCAL s_MaxSingle AS DOUBLE
LOCAL s_MinSingle AS DOUBLE
s _MaxSingle = 3.371E+38
s _MinSingle = 8.431E-37

IF a_IfDbl > 0.0 THEN
" force pos num <= s_MaxSingle
a_IfDbl = MIN (a_IfDbl, s_MaxSingle)
" force pos num >= s MlnSlngIe
a_IfDbl = MAX (a_IfDbl, s_MinSingle)
ELSE
IF a_IfDbl < 0.0 THEN
* force neg num >= -s_MaxSingle
a_IfDbl = MAX (a_IfDbl, -s_MaxSingle)
* force neg num <= -s MlnSlngIe
a_IfDbl = MIN (a_IfDbl, -s_MinSingle)
END IF
END IF
ForceFloatRange = a_IfDbl
END FUNCTION

This is an example of a local function used for calculations. This
one calculates a moving average on the source data array, and puts
the results in the result array. It differentiates its processing
based on whether the moving average is to be weighted or not.

SUB MovingAverage (a_psSrc AS MSXDatalnfoRec PTR, _
a_psRslt AS MSXDatalnfoRec PTR, _
BYVAL a_iPeriod AS LONG,
BYVAL a_blsWeighted AS LONG)
LOCAL I_ilIndex AS LONG
LOCAL I_iMaxIndex AS LONG
LOCAL I_IfSum AS DOUBLE

72 » Sample DLL Programs MetaStock ®

LOCAL 1_IfDbl AS DOUBLE
LOCAL I_fDivisor AS DOUBLE
LOCAL i AS INTEGER

lI_ilndex = @a_psSrc.iFirstvalid
1_iMaxIndex = @a_psSrc.iLastValid
I_IfSum = 0.0

IF a_blsWeighted = %TRUE THEN

" sum of the digits formula

I_fDivisor = CDBL(a_iPeriod) * (CDBL(a_iPeriod)+1.0) /7 2.0
ELSE

I_fDivisor = CDBL(a_iPeriod)
END IF
I_fDivisor = CSNG(ForceFloatRange (I_fDivisor))
IF 1_fDivisor = 0.0 THEN

I_fDivisor = 1.0
END IF
WHILE ((l_ilndex + a_iPeriod - 1) <= l_iMaxIndex)

I_1fSum = 0.0

FOR 1 = 0 TO a_iPeriod-1

IF a_blsWeighted = %TRUE THEN

" weighted
1_1fSum = 1_IfSum + @a_psSrc.@pfvalue[l_ilndex+i] * (i + 1.0)
ELSE
* simple
1_IfSum = 1_IfSum + @a_psSrc.@pfvalue[l_ilndex+i]
END IF
NEXT i

1_1¥Sum = ForceFloatRange(l_I1fSum)
1_1fDbl = ForceFloatRange(l_IfSum / 1_fDivisor)
@a_psRslt.@pfvalue[l_ilndex + a_iPeriod - 1] = CSNG(I_IfDbl)
I_ilndex = L_ilndex + 1

WEND

@a_psRslt_iFirstvValid = @a_psSrc.iFirstvalid + a_iPeriod - 1

@a_psRslt.iLastValid = I_iMaxIndex

END SUB

The following function demonstrates use of three argument types:
MSXDataArray, MSXNumeric and MSXCustom.
A MovingAverage is calculated on the input DataArray for input Periods.
Three moving average methods are available, specified by the Custom ID.
FUNCTION MyMov SDECL ALIAS "'MyMov"™ (_
a_psDataRec AS MSXDataRec PTR, _
a_psDatalnfoArgs AS MSXDatalnfoRecArgsArray PTR, _
a_psNumericArgs AS MSXNumericArgsArray PTR, _
a_psStringArgs AS MSXStringArgsArray PTR,
a_psCustomArgs AS MSXCustomArgsArray PTR, _
a_psResultRec AS MSXResultRec PTR) EXPORT AS LONG

LOCAL I_bRtrn AS LONG

" We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom, in that order
* The arguments will be found at:

- DataArray: @a_psDatalnfoArgs.psDatalnfoRecs(0)

- Numeric : @a_psNumericArgs.fNumerics(0);

- Custom . @a_psCustomArgs. iCustomIDs(0);
LOCAL I _psData AS MSXDatalnfoRec PTR

LOCAL I_iPeriod AS LONG

LOCAL I_iMethod AS LONG

LOCAL I_ilIndex AS LONG

LOCAL I_iMaxIndex AS LONG

I_bRtrn = %MSX_SUCCESS

IF (@a_psDatalnfoArgs.iNRecs = 1 AND _
@a_psNumericArgs.iNRecs = 1 AND _
@a_psCustomArgs.iNRecs = 1) THEN

I_psData = @a_psDatalnfoArgs.psDatalnfoRecs(0)

" truncate any fractional period

I_iPeriod = FIX(@a_psNumericArgs.fNumerics(0))
1_iMethod = @a_psCustomArgs. iCustomIDs(0)

MetaStock® Sample DLL Programs « 73

lI_ilndex = @1 _psData.iFirstvalid
I_iMaxIndex = @I_psData.ilLastValid

IF (I_iPeriod > 0 AND (I_ilndex + I_iPeriod - 1) <= I_iMaxIndex) THEN
SELECT CASE 1_iMethod
CASE 0 " Simple
CALL MovingAverage (@1 _psData, @a_psResultRec.@psResultArray, _
I_iPeriod, %FALSE)
CASE 1 " Weighted

CALL MovingAverage (@l1_psData, @a_psResultRec.@psResultArray, _
1_iPeriod, %TRUE)
CASE ELSE
" Somehow we got called with an invalid argument
@a_psResultRec.szExtendedError = "Undefined method argument’
1_bRtrn = %MSX_ERROR " report this AS an ERROR
END SELECT
ELSE
@a_psResultRec.@psResultArray.iFirstvalid = 0
@a_psResultRec.@psResultArray.ilLastvalid = -1
END IF
ELSE " wrong number of arguments!
@a_psResultRec.szExtendedError = "Wrong number of arguments'
I_bRtrn = %MSX_ERROR
END IF

IF (1_bRtrn <> %MSX_SUCCESS) THEN " only for serious errors...
@a_psResultRec.@psResultArray.iFirstvalid = 0
@a_psResultRec.@psResultArray.iLastValid = -1

END IF

MyMov = 1_bRtrn
END FUNCTION

References

See the following included source files for data structure definitions and additional
examples: MSXStruc.h, MSXTmplt.cpp, CSampleDLL .c, MSXStruc. inc,
MSXTmplt.pas, DelphiSampleDLL.pas, MSXStruc.bas, MSXTmplt.bas, and
PBSampleDLL .bas.

74 « Sample DLL Programs MetaStock ®

MetaStock File Library (MSFL)

Introduction

The MetaStock File Library (MSFL) Application Programming Interface (API)
provides developers with the tools necessary to integrate applications with the
MetaStock data format. The MSFL API provides support for reading security names
and price data.

Thismanual contains the function descriptions and instructions necessary to access
MetaStock data files using the MSFL. It assumes that the user is an experienced
programmer familiar with security price data and calling dynamic link library (DLL)
functions. The primary function of the MSFL isto remove many of the complexities of
accessing MetaStock data files from the application program through a set of easy-to-use
functions.

What's New

The 9.0 version of the MSFL has only minor changes. The PowerBasic sample app for
the MSFL and MSX uses the latest version (i.e. version 7.03).

See the section titled “ Change Record” on page 137 for details of al other changes.

Application Integration

Note:

Using the MSFL DLL in your application is different for each development
environment. Common to all development platformsis the need for Windows to locate
and load the MSFL DLL. The MSFL DLL, in order of preference, should be copied to
the Windows system directory, application directory, or other directory in the search
path.

The version of the MSFL DLL should be checked before overwriting an existing copy.
Refer to the GetFileVersionInfo function in the Win32™ SDK.

Below are basic instructions for several of the most common devel opment
environments. Refer to the devel opment documentation for specifics on using it with
third-party DLL’s.

C/C++

The following steps must be taken to create a C/C++ application that uses the M SFL
DLL.

1. Settheinclude path for the msfl.h header file. Refer to the compiler documentation
for the specifics of setting an include path.

2. Addthelink library to the project.

Link libraries for Microsoft Visual C++ 6.0 and Borland C++ Builder 4 are
provided. Refer to the compiler documentation for the specifics of adding alibrary
to the project.

3. If you are using a different compiler or thelink libraries provided are incompatible
with the compiler version you are using, you should be able to build the link
libraries using the definition file (i.e. msfl.def) and the tools provided with the
compiler. For example, Visual C++ uses L 1B with the /DEF switch, while Borland
C++ Builder usesthe IMPLIB utility program.

MetaStock®

MetaStock File Library (MSFL) « 75

Visual Basic

The following points should be observed to create a Visual Basic application that uses
the MSFL DLL.
1. Addthemsfl.bas module to the project, it can be found in the msfl/include
folder. The msfl .bas module contains the MSFL function and type declares.
2. Take carewhen using DLL procedures.
Microsoft Visual Basic cannot verify that you are passing correct valuesto the
MSFL DLL procedures. If you passincorrect values, the procedure may fail, which
may cause your application to shut down. This doesn't cause permanent harm to
your application, but may cause data corruption and require the user to reload and
restart the application.
3. Besureto check the return values of MSFL functionsto test for errors or messages.
A convenient error testing function is provided in themsfluti I .bas module, which
alsoresidesinthemsfl/include folder.
4. Special attention must be taken when dealing with string data.
Like the Windows API, the MSFL uses null-terminated strings. These strings differ
from those used in Visual Basic. In addition, variable- and fixed-length strings differ in
Visual Basic; for example, comparing a fixed-length string containing “ABC” may not
equal avariable-length string containing the exact same text.
ThemsFlutil .bas module, which residesin the msfl/include folder, provides
two convenient string conversion functions.
* NullTerminate(strNullMe As String) As String
Null Terminate null-terminates a variable or fixed length string.
All fixed-length strings must be null-terminated before calling any of the
MSFL functions.
o Extract(strFixed As Sring, strdunk As Sring) As String
Extract returns a variable-length string containing the legitimate portion of a
string. Pass a string to the strJunk parameter which contains theillegitimate
character, typically either aspace or null (i.e. Chr(0)). Extract should be used
on all strings returned from the MSFL.

Delphi

The following steps must be taken to create a Delphi form that usesthe MSFL DLL.
1. Addthemsfl .pas unit to the project; it can befound in themsfl/include folder.
Thems¥Fl .pas unit contains the MSFL constant, record and function declarations.
2. Add the MSFL unit to the form’s uses clause.

PowerBASIC

The following points should be observed to create a PowerBASIC application that uses
the MSFL DLL.

1. Ensurethat themsfl . inc moduleisincluded in any file of your project that makes
MSFL calls. Themsfl . inc module can be found in the msfl/include folder.
ThemsFl . inc module contains the MSFL function and type declares.

2. Besureto check thereturn values of MSFL functionsto test for errors or messages.
A convenient error testing function is provided in the msfl.inc module.

76 MetaStock File Library (MSFL) MetaStock®

Getting H

elp

Due to the complexity of the programming languages and development environments,
Equis International is only able to provide minimal technical support for the MetaStock
File Library (MSFL). Wewill help in understanding how to use the MSFL, but we
cannot aid in writing or debugging your application.

This manual explains the use of the MSFL, but not the programming techniques
required to effectively useit. Equis International providesthislibrary asatool to access
MetaStock data, but how it isused is up to you.

CAUTION:

Some functions in the MSFL can cause loss of the user’ s dataif used improperly or
inappropriately. Equis International shall not be responsible for any damages of any
type caused by application programs that use the MSFL.

See “Getting Help” on page 4 for more information on obtaining Technical Support for
the MetaStock Devel oper’ s Kit.

The sample applications included on the CD-ROM can also be a good source of
information as well as an excellent starting point.

Overview

The MSFL was devel oped to provide multi-user and networking support aswell as limit
the amount of information that an application program is required to know about the
actual storage of MetaStock data. An application program calls the MSFL functions to
read and write both security and price data. All file handles and other low-level
considerations are handled by the MSFL. However, the application program is
responsible for ensuring that directories opened on removable media are closed before
the mediais removed from the drive.

MSFL Function Levels

MSFL functions are organized into two levels.

* Level 1 functions (prefixed by “MSFL 1 ") are the basic 1/0 functions needed to
access MetaStock data files.

» Level 2 functions (prefixed by “M SFL2_") provide support for common tasks that
require multiple Level 1 function calls. Using Level 2 functionsisrecommended over
multiple callsto Level 1 functions because of their ease of use and increased
efficiency.

Securities

The term “security” is used throughout this manual to refer to stocks, bonds, mutual

funds, commodities, currencies, futures, indices, options, etc. The MetaStock format
does not differentiate between any of the above types of securities. Each MetaStock

directory can contain from O to 6,000 securities.

Price Data

Each security has from 0 to 65,500 price records associated with it. In terms of a
relational database, there is a one-to-many relationship between the securities and their
associated price records. Each price record contains the security price for the period
(e.g. tick, day, week, etc.) denoted by the time/date. The fields in the price record
largely depend on the security type.

MetaStock®

MetaStock File Library (MSFL) « 77

Composites

Composites are simulated securities composed of two securities. The price datais
calculated from the two securities that make up the composite. The first security of the
compositeis known as the “primary security,” and the second is known as the
“secondary security.” Price data can only be calculated for the common records
between the primary and secondary securities.

Except for afew restrictions, the application program can use composite securities like
standard securities. The M SFL manages the matching and calculation of the simulated
price data.

Because composites price records are calculated rather than being stored on disk, there
are no record numbers associated with composite price records. Any functions that
reguire arecord number cannot be used with composite securities. In addition, any
functions that return record numbers will always return a zero for a composite’ s record
number.

If the application attemptsto call afunction that cannot be used with composite securities,
the MSFL function will returnan MSFL_ERR_SECURITY_IS A_COMPOSITE error.

Multi-user Support

To provide multi-user support, the MSFL implements two types of locking, directory
and security. Directory locking isinternal to the MSFL. Security locking isinitiated by
the application program via M SFL function calls.

Directory

When the MSFL requires exclusive access to one or more of the filesin a directory, the
directory is often locked, restricting access to other users. In most cases, the M SFL
internal retry period will shield the application from noticing this situation. However, if
the directory remainslocked, an MSFL_ERR_DIR_IS BUSY error is returned.

Security

Security locking allows the application to gain access to securities and their price data.
Multiple users are permitted to “prevent write” (read) lock a security, but only one user
is permitted to write or full lock a security at any given time.

Because of the multi-processing nature of Microsoft Windows, even single-user
applications should guard against multiple applications and/or users accessing the same
data. Thus, the M SFL requires even single-user applicationsto lock and unlock securities.
For detailed information on locking securities, see the “ Security Locking” sectionin
Using The Library (page 86).

78 + MetaStock File Library (MSFL) MetaStock®

Reserved File Names

The MetaStock file format reserves several file namesfor storing price data and security
information. In addition, the MSFL also uses severa temporary files. To avoid conflict
and possible data loss, the application program should not use the file names listed.

File Name File Type
~MSFL . INX MSFL security index
~MSFL.LCK MSFL security lock information
~MSFL.SEC MSFL security information
~MSFL.USR MSFL user information
~NONMSFL .USR Non-MSFL user information
MASTER Security information
EMASTER Security information
XMASTER Security information
F*_DAT Price data
F*_MWD Price data
F*_DOP Price data format
F*_TMP MSFL temporary price data
SRT*_.TMP MSFL temporary sort file
C*_MWS MetaStock Smart Chart
*_MWC MetaStock chart
* _MWT MetaStock template
*_MWL MetaStock layout

CD-ROM Support

The MSFL isable to read MetaStock data directly from a CD-ROM drive and other
read-only media. The multi-user MSFL files (~-MSFL*.*) are created in the directory
specified by the GetTempPath Windows API call. A maximum of 4,095 sets of MSFL
files can exist in the temporary directory at any given time.

Data Types

The MSFL uses several data types to retrieve and return information to the application
program. These data types are consistent throughout the library. The specifics of each
field are documented in the Structures section (page 81) of this manual.

Formats
This section is an overview of the different field types and not the specific fields.

Dates

Dates are of type long and are stored in ayear, month, day format with the year being a
four digit year (e.g. 15 January 1997 isstored in along as 19970115). Valid datesrange
from 1 January 1800 to 31 December 2200.

Times

Times are of type long and are stored in hour, minutes, tick order (e.g. 10:03:002 is
stored in along as 1003002). Times are always in twenty-four hour format. Notice that
the last segment of the timeis not seconds, but ticks. The tick count is used instead of
seconds to handle the case of multiple ticks per minute without duplication of records.
Thefirst tick of aminute is 000, the second is 001, and so on, up to 999. Valid times
range from 00:00:000 to 23:59:999.

MetaStock®

MetaStock File Library (MSFL) « 79

Price Data Items

Price dataitems (e.g. open, close, volume, etc.) are of type float and stored in the IEEE
floating point format.

Symbols

Symbols are of type char and are stored as null-terminated strings. The symbol contains
the ticker symbol for the security. Symbols are case sensitive, so the applicationis
responsible for case conversions. Only characters above ASCII 31 are allowed, and all
symbols should be stripped of trailing spaces. The symbol must also be left-justified in
the string (that is, no leading characters or spaces). The maximum length of asymbol is
defined by MSFL_MAX_SYMBOL_LENGTH.

Note: The maximum symbol length does not include the terminating null; it isthe maximum length
of the symbol itself.

Data Field Combinations

MetaStock price datacan consist of eight different fields (date, time, high, low, open, close,
volume, and open interest). These fields are grouped logically together in severa
combinations (e.g. date, time, close, and volume). Like a database of persond information,
it wouldn’t make much senseif it only contained the street address, state, and zip code.

To be meaningful, the database would also need the name, city, and perhaps a phone
number. Likewise, there are only certain combinations of the eight fields in M etaStock
price data that make sense.

The MSFL will only work with specific combinations of data fields. Even though each
bit inthewDataAvailablefield can be set separately, there are alimited number of valid
combinations. The basic rules are:

e There must be four or more fields used.

 There can be no more than eight fields used.

» Thefields, except for the time, must be used in the same order as they appear in the
Field Combinations table (below). The Time field is used only for intraday securities.

Several combinations are possible based on the rules and will work with the MSFL ;
however, the entriesin the following table are the only data field combinations
supported by MetaStock. The table is organized with the data fields and their
mnemonics running horizontally and the valid field combinations running vertically.
For example, the first column in the Valid Field Combinations represents an intraday
four-field combination. The checkmarksindicate that the fieldsfor this combination are
date, time, close and volume.

Fields Mnemonic for Bits Field Combinations
Date MSFL_DATA_DATE VI iVvVIiVIiVIVI VIV
Time MSFL_DATA_TIME v v v |V
Close MSFL_DATA_CLOSE VAR AR AR A RVERERS
Volume MSFL_DATA_VOLUME VAR AR AR AR AR AR
High MSFL_DATA_HIGH VAR AR AR AR AR
Low MSFL_DATA_LOW v iV VvV vVI|Vv
Open MSFL_DATA_OPEN v I v v Vv
Open Interest MSFL_DATA_OPENINT v v

The wDataAvailable or field combinations are created by bitwise OR-ing the
mnemonics

(e.g. MSFL_DATA DATE | MSFL_DATA_CLOSE | MSFL_DATA_VOLUME |
MSFL_DATA_HIGH).

80 MetaStock File Library (MSFL) MetaStock®

Types

The MSFL uses severa defined data types. Except for the MSFL specific datatype
below, the data types are exactly the same as those in the Microsoft Windows Software
Development Kit.

HSECURITY isa32-hit value used as a handle to a security. The security handle
uniquely identifies any security. Security handles are not persistent; that is, they are
only valid while the directory is open. Once the directory is closed, the handleisinvalid.

Variable Notation

The MSFL uses aform of Hungarian notation to designate the type of each variable or
structure member. The type prefixes each variable name. Following isalist of the

notations used by the MSFL.
Notation |Type Description
b BOOL | Boolean, a 32-hit value where zero equals false and any non-zero
value equals true.
c char Character, an 8-bit signed value.
dw DWORD| Double word, a 32-bit unsigned integer value.

float A single precision, 32-hit, floating point number.

N/A A handle, usually a 32-bit value.

long Long integer, a 32-bit signed value.

N/A A pointer, a 32-bit address.

f
h
i int Integer, a 32-bit signed value.
|
p
S

N/A Structure, a user defined type.

sz char A null-terminated string of signed characters.
uc BYTE | Byteor unsigned character, an 8-bit unsigned value.
ui UINT Unsigned integer, a 32-bit unsigned value.

WORD | Word, a 16-bit unsigned integer value.

Structures

Thefollowing structures are used to request, read and write datato and from MetaStock
files. Sincethe MSFL providesonly limited datavalidation, it isthe responsibility of the
application program to validate the data before writing it to the MetaStock files.

Date Time Structure

The date time structure is used to specify the date and time. It is both passed to and
returned from many of the MSFL functions. If thereis no time, the I Time member of the
structure is set to zero. The section titled “Formats’ on page 79 has more information on
the date and time formats.

Structure
typedef struct tagDateTime
{
longlDate;
longlTime;

} DateTime_struct;

MetaStock® MetaStock File Library (MSFL) « 81

Security Information Structure

The security information structure is used to retrieve information about securities and to
add new securities.

Structure
typedef struct
{
DWORDdwTotalSize;
HSECURITYhSecurity;
charszName[MSFL_MAX_NAME_LENGTH+1];

char
szSymbol [MSFL_MAX_SYMBOL_LENGTH+1];

charcPeriodicity;
WORDwInterval ;
BOOLbComposite;
BOOLbFlagged;
BYTEucDisplayUnits;
char

szCompSymbol [MSFL_MAX_SYMBOL_LENGTH+1];
charcCompOperator;
floatfCompFactorl;
floatfCompFactor?2;
longlFirstDate;
longlLastDate;
longlFirstTime;
longlLastTime;
longlStartTime;
longlEndTime;
longlCollectionDate;
longIMostRecentAdjDate;
floatfMostRecentAdjRatio;
WORDwDataAvailable;

} MSFLSecuritylnfo_struct;

82 « MetaStock File Library (MSFL) MetaStock®

Fields

ID

Description

dwTotal Size

The size of the structure, in bytes. This member must be set to the
structure size before calling any function that takes the structure asa
parameter.

hSecurity

The security handle.

szName

The name of the security. Thisis not the symbol, but the name by
which the security should be referred to by the user. Any trailing
spaces should be stripped from the name. The maximum length of
the name, not including the terminating null, is defined by
MSFL_MAX_NAME_LENGTH.

szSymbol

The security’sticker symbol. If this security isacomposite, thisis
the symbol of the primary security. The maximum length of the
symbol, not including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cPeriodicity

The periodicity of the security (i.e. “D”aily, “W"eekly, “M” onthly,
or “|”ntraday). The valid periodicities are defined, (in a string) by
MSFL_VALID_PERIODICITIES.

wl nterval

Theintraday interval of the security. Thisfield indicatestheinterval,
in minutes, between price data. For tick data and non-intraday
securities, thisfield is set to zero. The minimum interval is defined
by MSFL_MIN_INTERVAL and the maximum interval is defined
by MSFL_MAX_INTERVAL.

bComposite

Boolean value indicating if the security is a composite.

bFlagged

Boolean value indicating if the security is flagged. The flagged
status is used by application programs to perform tasks on several
securities (i.e. al securities that are flagged).

ucDisplayUnits

The unitsin which the price data should be displayed: decimal or
fractional. If equal to MSFL_DISPLAY_UNITS_DECIMAL, the
price data should be displayed in decimal format. Otherwise, it
indicates the denominator (e.g. adisplay units of 4 would indicate
the price data should be displayed in ¥4's). Valid display units range
from MSFL_MIN_DISPLAY_UNITSto
MSFL_MAX_DISPLAY_UNITS.

szCompSymbol

The symbol of the secondary security in the composite. If thissecurity is|
not a composite, szCompSymbol isanull string. The maximum length
of the composite symbol, not including the terminating null, is defined
by MSFL_MAX_SYMBOL_LENGTH.

cCompOperator

The composite operator (i.e. the mathematical operation to perform
between the two securitiesin the composite: +, -, *, /). Thevalid
operators are defined, in astring, by MSFL_VALID_OPERATORS. If
the security is not acomposite, it is zero.

fCompFactorl

The factor that the primary security’s price datais multiplied by,
before performing the composite operation. If the security isnot a
composite, it is zero.

fCompFactor2

The factor that the secondary security’s price datais multiplied by,
before performing the composite operation. If the security isnot a
composite, it is zero.

IFirstDate

The date of the first price record. For more information on date and
time formats, see “Formats’ (page 79).

|LastDate

The date of the last price record. For more information on date and
time formats, see “Formats” (page 79).

MetaStock®

MetaStock File Library (MSFL) « 83

ID Description

IFirstTime

Thetime of thefirst pricerecord. For end-of-day securities, thisfield
is zero. For more information on date and time formats, see
“Formats’ (page 79).

[LastTime

Thetime of the last price record. For end-of-day securities, thisfield
is zero. For more information on date and time formats, see
“Formats’ (page 79).

|SartTime

The trading start time. This time specifies when the real-time
program should begin collecting price data for this security. For end-
of-day securities, the timeis zero. For more information on date and
time formats, see “Formats’ (page 79).

I[EndTime

The trading end time. This time specifies when the real-time
program should stop collecting price data for this security. For end-
of-day securities, the timeis zero. For more information on date and
time formats, see “ Formats’ (page 79).

|CollectionDate

Thedate prior to thefirst date (i.e. IFirstDate) in which to collect price
data. Since thefirst date indicates the date of the first record in the
price data, it cannot be adjusted. The collection date indicates to the
collection gpplication, such as The DownL oader, to collect the price
data between the collection date and the first date; thus, alowing
collection of price data prior to the current price data. For more
information on date and time formats, see “ Formats’ (page 79).

IMostRecentAdjDate

Reserved for future use.

fMostRecentAdjRatio

Reserved for future use.

wDataAvailable

Thefields that are available in the associated price datafile

(e.g. date, time, open, close, volume, etc.). Use the datafield
mnemonics to set and determine the price data fields available. For
more details, see “Data Field Combinations’ (page 80).

Price Record Structure

The price record structure is used to read and write price data. All possible price fields
arein the structure. However, not all fields will always be used. The wDataAvailable
field indicates the fields used in the price record. The section titled “ Data Field
Combinations’ on page 80 has more detailed information.

Structure
typedef struct

{

longlDate;
longlTime;
floatfOpen;
floatfHigh;
floatfLow;
floatfClose;
floatfVolume;
floatfOpenint;
WORDwDataAvailable;

} MSFLPriceRecord_struct;

Fields
ID Description
IDate The closing date of the period (i.e. a“period” being atick, minute, day,

week,

see “Formats’ (page 79).

month, etc.). For more information on date and time formats,

[Time The closing time of the intraday period.
For moreinformation on date and time formats, see “Formats’ (page 79).

84 « MetaStock File Library (MSFL)

MetaStock®

ID

Description

fOpen The price that the security first traded during the period.

fHigh The highest price that the security traded during the period.

fLow The lowest price that the security traded during the period.

fClose The price of the last trade for the security during the period.

fVolume The volume for the period. The volume may be entered in any units
(e.g. ones, tens, hundreds, etc.), aslong as the units are consistent.
Hundreds is most commonly used.

fOpenint The number of open contracts at the previous day’s close. Open interest
may be in any units.
Openinterest istypically available only for futures and options.

wDataAvailable | Thefields that are available in the datafile (e.g. date, time, open, close,

volume, etc.). Use the data field mnemonics to set and determine the
price data fields available (page 80).

MetaStock®

MetaStock File Library (MSFL) « 85

Using the Library

This section describes important concepts and details on using the MSFL with your
application.

Outline
The basic outline for writing an application that uses the MSFL is as follows.

1.

Initialize the MSFL.
See:
e MSFLZ Initialize (page 115)

» The section titled “Initialization” on page 87 has more on initializing the MSFL.

Open the directory.

See:

e MSFL1_OpenDirectory (page 119)

Obtain the security handle(s).

See:

* MSFL1_GetFirstSecuritylnfo (page 103)

e MSFL1_GetlLastSecuritylnfo (page 106)

e MSFL1 GetSecurityHandle (page 111)

e MSFL2_GetSecurityHandles (page 125), etc.

Lock the security.

See:

e MSFL1 LockSecurity (page 116)

Process the price data

See:

* MSFL1_ReadDataRec (page 122)

e MSFL2_ReadMultipleRecs (page 128), etc.

Unlock the security.

See:

e MSFL1_UnlockSecurity (page 124)
Move to the next security.

See:

e MSFL1_GetNextSecuritylnfo (page 108)

e MSFL1_GetPrevSecuritylnfo (page 109), etc.

Close the directory.

See:

e MSFL1_CloseDirectory (page 92)
Shut down the MSFL.

See:

e MSFL1_Shutdown (page 124)

86 MetaStock File Library (MSFL)

MetaStock®

Initialization

Before calling any of the price data or security functions, the library must be initialized
by calling MSFL1 Initialize (page 115). After using the library and before terminating
the application program, the library must be shut down with acall to MSFL1 Shutdown

(page 124).

Directory Opening

Before any of the MSFL functions can be used to read securities or price data, the
directory containing the MetaStock files must first be opened via
MSFL1_OpenDirectory (page 119).

The MSFL manages directories similar to the way operating systems manage files.
When opening adirectory, adirectory number isreturned. This directory number can be
thought of as a handle. Once the directory is open, it remains open until it is closed or
until the MSFL is shutdown. As with files, multiple directories can be open
concurrently. The MSFL limits the number of open directoriesto
MSFL_MAX_OPEN_DIRECTORIES.

Security Locking

Before accessing a security or its price data, the security must first be locked via
MSFL1_LockSecurity (page 116). Locking prevents other users or applications from
modifying or deleting the security whileit isin use. Since locking may prevent other
users and applications from accessing data, the application should unlock the security as
soon asit is finished using the security.

When locking composite securities, the primary and secondary securities are also
locked internally by the MSFL. Thus, if the composite or any of its parts cannot be
locked, the lock fails.

An application cannot concurrently lock the same security multiple times.

If the application attemptsto lock a security that is aready locked by the application,
the lock will fail.

If the security was locked by another user, the MSFL1 Getl astFailedLockinfo
(page 105) function can be used to retrieve the user name or number of users with the
security locked.

Lock Types

There are three different lock types that can be applied to a security by the application
program. To alow other users and applications to share security and price data, the
application should always use the lowest lock type available for the operation.
Following isalist of the different lock typesin order of precedence.

Full A “full” lock, defined by MSFL_L OCK_FULL_LOCK, providesthe
application with total control of the security. The application can edit the
security information as well as read and write price data. Other users cannot
lock the security, nor can this security be used by a composite security.

Write A “write” lock, defined by MSFL_LOCK_WRITE_LOCK, allowsthe
application to read and write security price data, but does not allow the
application to edit the security information (e.g. name, symbol, composite factor,
etc.). When a security is“write” locked, the security cannot be locked by other
users. Since composite price data cannot be written, composite securities cannot
be “write” locked. Attempting to “write” lock acomposite will result in an error.

Prevent A “prevent write” lock, defined by MSFL_LOCK_PREV_WRITE_LOCK,
Write allows the application to read but not write price data. When a security is
“prevent write” locked, other users cannot “write” or “full” lock the security.
However, the security can be “prevent write” locked by multiple users.

MetaStock®

MetaStock File Library (MSFL) « 87

Data Assumptions and Requirements

The MSFL assumes that the price dataisin ascending date/time order. If there are
duplicate price records grouped together, the MSFL will find thefirst record for agiven
date/time.

The MSFL requires that all the securitiesin adirectory are unique (i.e. the ticker symboal,
periodicity, and interval of one security does not match that of another). Composites may
have a duplicate ticker symbol, periodicity, and interval, but only one composite of each
operator (i.e. add, subtract, multiply, and divide) is allowed.

IMPORTANT: A directory with duplicate securities cannot be opened unless the securities are merged;
see MSFL1 OpenDirectory (page 119) for more information.

Error Handling

The MSFL allowsthe application program to detect and recover from avariety of errors
resulting from any of its functions. All functionsin the MSFL return error conditionsin
the form of negative return codes. Other informational messages are returned as positive
return codes. Always use the mnemonic error codes defined in appropriate header file
(i.e. msfl_h, msfl _bas, msfl .inc or msfl .pas). The values of the error codes may
change in future versions, so by using the mnemonic, the application program will
remain compatible.

CAUTION: If the MSFL encounters a serious problem with the operating system or itsinternal
tables, an MSFL_ERR _MSFL_CORRUPT error code is returned. If the application
encounters this error, the MSFL should be shut down and the application program
should exit. Any additional callsto the MSFL will not be performed and the
MSFL_ERR_MSFL_CORRUPT error code will be returned. In some instances, the
operating system itself may be corrupt, so it is recommended that the user reboot the
computer after exiting the application.

For acomplete list of error codes, see the “Error Codes’ section of this manual
beginning on page 131.

Functions

This section contains an a phabetical list of the available MSFL functions.

The function prototypes, structures, error codes, message codes, and miscellaneous
defines are contained in the header file (nsfl . h, msfl .bas, msfl . inc or msfl.pas).
This header file should be included in each module that uses any of the MSFL functions.

Return Values

Unless otherwise stated in the function, all MSFL functions return an MSFL error code.
On successful completion, MSFL_NO_ERR is returned; in the event of an error,

the specific MSFL error code is returned. For a complete list of error codes, seethe
“Error Codes’ section of this manual beginning on page 131.

Some functions return an M SFL message to indicate the action taken by the function.
These messages are documented in the functions themselves. For a complete list of
message codes, see the “Message Codes’ section of this manual beginning on page 136.

88 * MetaStock File Library (MSFL) MetaStock®

Listed By Name

Hereisaname-ordered list of the MSFL functions (with alink to their description page).

Function Name

Page

MSFL1_CloseDirectory

92

MSFL1_FindDataDate

92

MSFL1 FindDataRec

93

MSFL1_FormatDate

94

MSFL1 FormatTime

95

MSFL1_ GetCurrentDataPos

96

MSFL1_GetDataPath

97

MSFL1_GetDataRecordCount

97

MSFL1_GetDayMonthYear

98

MSFL1_GetDirectoryNumber

99

MSFL1_GetDirectoryStatus

100

MSFL1 GetDirNumberFromHandle

100

MSFL1_GetErrorMessage

102

MSFL1_GetFirstSecurityInfo

103

MSFL1 GetHourMinTicks

104

MSFL1_GetLastFailedLockInfo

105

MSFL1_GetLastFailedOpenDirinfo

106

MSFL1_GetLastSecurityInfo

106

MSFL1_GetMSFL State

107

MSFL1_GetNextSecurityInfo

108

MSFL1_GetPrevSecurityInfo

109

MSFL1_GetRecordCountForDateRange

110

MSFL1_GetSecurityCount

111

MSFL1_GetSecurityHandle

111

MSFL1_GetSecurityID

112

MSFL1_GetSecurityInfo

113

MSFL1_GetSecurityLockedStatus

114

MSFL1_Initialize

115

MSFL1_LockSecurity

116

MSFL1_MakeMSFLDate

117

MSFL1_MakeMSFLTime

118

MSFL1_OpenDirectory

119

MSFL1_ParseDateString

120

MSFL1 ParseTimeString

121

MSFL1_ReadDataRec

122

MSFL1_SeekBeginData

123

MSFL1_SeekEndData

123

MSFL1_Shutdown

124

MSFL1_UnlockSecurity

124

MSFL2_GetSecurityHandles

125

MSFL2_ReadBackMultipleRecs

126

MSFL2_ ReadDataRec

127

MSFL2_ReadMultipleRecs

128

MSFL2_ReadMultipleRecsByDates

129

MetaStock®

MetaStock File Library (MSFL) « 89

Listed By Type
Here are type-ordered lists of the MSFL functions (each linked to their description page).

Data.

Function Name Page
MSFL1_GetDataRecordCount 97
MSFL1_GetRecordCountForDateRange 110
MSFL1_ReadDataRec 122
MSFL2_ReadBackMultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129
Date / Time.

Function Name Page
MSFL1 FormatDate 94
MSFL1 FormatTime 95
MSFL1_GetDayMonthYear 98
MSFL1_GetHourMinTicks 104
MSFL1_MakeMSFLDate 117
MSFL1_MakeMSFLTime 118
MSFL1_ParseDateString 120
MSFL1_ParseTimeString 121
Directory.

Function Name Page
MSFL1_CloseDirectory 92
MSFL1_GetDataPath 97
MSFL1_GetDirectoryNumber 99
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetDirectoryStatus 100
MSFL1_OpenDirectory 119
Error Reporting.

Function Name Page
MSFL1_GetErrorMessage 102
MSFL1_GetlLastFailedLockInfo 105
MSFL1_GetlLastFailedOpenDirinfo 106
Locking.

Function Name Page
MSFL1_GetSecurityLockedStatus 114
MSFL1_LockSecurity 116
MSFL1_UnlockSecurity 124

90 MetaStock File Library (MSFL) MetaStock®

Search / Positioning.

Function Name Page
MSFL1 FindDataDate 92
MSFL1 FindDataRec 93
MSFL1_GetCurrentDataPos 96
MSFL1_SeekBeginData 123
MSFL1_SeekEndData 123
Security.

Function Name Page
MSFL1_GetFirstSecuritylnfo 103
MSFL1_GetLastSecurityInfo 106
MSFL1_GetNextSecuritylnfo 108
MSFL1_GetPrevSecuritylnfo 109
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecuritylD 112
MSFL1_GetSecurityInfo 113
MSFL2_GetSecurityHandles 125
System.

Function Name Page
MSFL1_GetMSFL State 107
MSFL1_Initialize 115
MSFL1_Shutdown 124
Reference

The following pages describe, in a phabetical order, the functionsin the MetaStock File
Library. The discussion of each function includes a section that illustrates the function
syntax — in C, Visua Basic, Delphi and PowerBASIC — followed by these sections.

ID

Description

Locking

Indicates the minimal lock the application must have on the security before
calling the function.

Return Value

Provides the most common return values. In most cases other M SFL
error/message codes may be returned.

The section titled “Messages and Errors’ on page 131 has a complete
listing of these codes.

Parameters

Describes each argument passed to the function.

Remarks

Provides a brief description of the function and any additional notes on its
use.

See Also

Provides the names of related functions.

MetaStock®

MetaStock File Library (MSFL) « 91

MSFL1_CloseDirectory
C
int MSFL1_CloseDirectory(char cDirNumber)

Visual Basic
MSFL1_CloseDirectory (ByVal cDirNumber As Byte) As Long

Delphi
MSFL1_CloseDirectory (cDirNumber : char) : integer;

PowerBASIC
MSFL1_CloseDirectory (BYVAL cDirNumber AS BYTE) As Long

Locking
* None

Return Values
« MSFL_NO_ERR if successful

* MSFL_ERR_DIR_NOT_OPEN if the directory is not open
Parameters

ID Description
cDirNumber | Identifiesthe directory in which to close.

Remarks

« Closes an open directory. All open filesin the directory are closed.

« When the last user closes a directory, the MASTER, EMASTER, and XMASTER
files are updated with any changes made while the directory was open and the
temporary MSFL files are removed from the directory.

See Also
e MSFL1 OpenDirectory (page 119)

e MSFL1_Shutdown (page 124)

MSFL1_ FindDataDate

C
int MSFL1_FindDataDate(HSECURITY hSecurity,
DateTime_struct *psRecordDate,
WORD *pwRecordNum,
int iFindMode)

Visual Basic
MSFL1_ FindDataDate(ByVal hSecurity As Long,
psRecordDate As DateTime_struct,
pwRecordNum As Integer,
Byval iFindMode As Long) As Long

Delphi
MSFL1_FindDataDate(hSecurity : HSECURITY;
Var psRecordDate : DateTime_struct;
Var pwRecordNum : word;
iFindMode : integer) : integer;
PowerBASIC
MSFL1_FindDataDate(BYVAL hSecurity AS DWORD,

psRecordDate AS DateTime_struct,
pwRecordNum As Word,
BYVAL iFindMode As Long) As Long

Locking
* Prevent Write Lock

92 « MetaStock File Library (MSFL) MetaStock®

Return Values

* MSFL_NO_ERR if successful
e MSFL_MSG_NOT_AN_EXACT_MATCH if successful, but an exact match was

not found

e MSFL_ERR_DATE_BEFORE_FIRST_REC if the specified date/timeis before
the first price record

« MSFL_ERR_DATE_AFTER_LAST_REC if the specified date/time is after the
last price record

e MSFL_ERR_DATA_RECORD_NOT_FOUND if amatching price record could
not be found for the specified date/time

« MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records

Parameters
ID Description
hSecurity I dentifies the security.
psRecordDate |Pointsto a DateTime_struct structure containing the date/time to find. If the
security is not an intraday security, thetime isignored. If an exact matchis
not found, psRecordDate receives the date/time of the record found.
pwRecordNum |Points to a WORD that receives the record number for the price record found.
If the record is not found or if the security is acomposite the record number is
returned as zero.
iFindMode Indicates what type of search to perform to locate the price record. Following
are the different modes available.
¢ MSFL_FIND_CLOSEST_PREV
If an exact match is not found, find the previous closest record.
« MSFL_FIND_CLOSEST_NEXT
If an exact match is not found, find the next closest record.
« MSFL_FIND_EXACT _MATCH
Find an exact date/time match.
Remarks
« Finds the price record for the specified date/time and sets the current data position to
that record.
See Also

* MSFL1_FindDataRec (page 93)

e MSFL1_ GetCurrentDataPos (page 96)
« MSFL1_ SeekBeginData (page 123)

e MSFL1 SeekEndData (page 123)

MSFL1_FindDataRec

C

int MSFL1_FindDataRec(HSECURITY hSecurity,
WORD wRecordNum,
DateTime_struct *psRecordDate)

Visual Basic

MSFL1_FindDataRec(ByVal hSecurity As Long,
ByVal wRecordNum As Integer,
psRecordDate As DateTime_struct) As Long

Delphi

MSFL1_FindDataRec(hSecurity : HSECURITY;
wRecordNum : word;
Var psRecordDate : DateTime_struct) : integer;

MetaStock®

MetaStock File Library (MSFL) « 93

Note:

PowerBASIC

MSFL1_FindDataRec(BYVAL hSecurity AS DWORD,
BYVALwRecordNumAs Word,
psRecordDate AS DateTime_struct) As Long

Locking
* Prevent Write Lock

Return Values
e MSFL_NO_ERR if successful

« MSFL_ERR_RECORD_OUT_OF_RANGE if aprice record does not exist for the

specified record number
e MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records

Parameters
ID Description
hSecurity I dentifies the security.

wRecordNum | Specifies the record number to find. Record numbers are one based.

record found.

psRecordDate| Pointsto a DateTime_struct structure that receives the date/time of price

Remarks
» Findsthe price record for the specified record number and sets the current data

position to that record.

This function cannot be used with composite securities.
See Also

e MSFL1 FindDataDate (page 92)

e MSFL1_GetCurrentDataPos (page 96)
 MSFL1_SeekBeginData (page 123)

e MSFL1 SeekEndData (page 123)

MSFL1 FormatDate

C
int MSFL1_FormatDate(LPSTR pszDateString,
WORD wStringSize,
long IDate);
Visual Basic
MSFL1_FormatDate(ByVal pszDateString As String,
ByvVal wStringSize As Integer,
ByVal IDate As Long) As Long

Delphi
MSFL1_FormatDate(pszDateString : LPSTR;
wStringSize : word;
IDate : integer) : integer;
PowerBASIC
MSFL1_FormatDate(pszDateString AS ASCI1Z,
BYVAL wStringSize As Word,
BYVAL IDate As Long) As Long
Locking
¢ None

Return Values

e MSFL_NO_ERR if successful

« MSFL_ERR_INVALID_DATE if the date to be formatted isinvalid

« ERROR_INSUFFICIENT_BUFFER if the date string is not large enough

94 - MetaStock File Library (MSFL)

MetaStock®

Parameters

ID Description

pszDateString | Pointsto a null-terminated string that receives the formatted date string.

wStringSize I ndi cates the maximum string length that pszDateString can receive,
including the terminating null.

IDate The MSFL date to be formatted.

Remarks

« Formatsan MSFL date asadate string. The string is formatted based on the Windows
short date format, using the default system locale.

See Also

« MSFL1 FormatTime (page 95)

* MSFL1_GetDayMonthYear (page 98)
e MSFL1 ParseDateSring (page 120)
e MSFL1 ParseTimeSring (page 121)

MSFL1 FormatTime

C

int MSFL1_FormatTime(LPSTR pszTimeString,
WORD wStringSize,
long ITime,
BOOL bIncludeTicks);

Visual Basic

MSFL1_FormatTime(ByVal pszTimeString As String,
ByvVal wStringSize As Integer,
Byval ITime As Long,
ByVal blncludeTicks As Long) As Long

Delphi

MSFL1_FormatTime(pszTimeString : LPSTR;
wStringSize : word;

ITime - integer;
bIncludeTicks : bool) : integer;
PowerBASIC
MSFL1_FormatTime(pszTimeString AS ASCI1Z,

BYVAL wStringSize As Word,
BYVAL ITime As Long,
BYVAL blIncludeTicks AS DWORD) As Long

Locking
* None

Return Values

« MSFL_NO_ERR if successful
e MSFL_ERR_INVALID_TIME if thetime to be formatted isinvalid
« ERROR_INSUFFICIENT_BUFFER if thetime string is not large enough

Parameters
ID Description
pszTimeString | Pointsto a null-terminated string that receives the formatted time string.
wStringSize I ndi cates the maximum string length that pszTimeString can receive,
including the terminating null.
Time The MSFL time to be formatted.
bIncludeTicks | Indicatesif the time string will include ticks (e.g., 10:51:002 AM),
or hours and minutes only (e.g., 10:51 AM).

MetaStock®

MetaStock File Library (MSFL) « 95

Remarks
» Formats an MSFL time as atime string. The string is formatted based on the
Windows time format, using the default system locale.

See Also

* MSFL1_FormatDate (page 94)

e MSFL1_GetHourMinTicks (page 104)
e MSFL1 ParseDateSring (page 120)
e MSFL1 ParseTimeSring (page 121)

MSFL1_GetCurrentDataPos

C
int MSFL1_GetCurrentDataPos(HSECURITY hSecurity,
WORD *pwRecordNum,
DateTime_struct *psRecordDate)

Visual Basic
MSFL1_ GetCurrentDataPos(ByVal hSecurity As Long,
pwRecordNum As Integer,
psRecordDate As DateTime_struct) As Long
Delphi
MSFL1_GetCurrentDataPos(hSecurity : HSECURITY;
Var pwRecordNum : word;
Var psRecordDate : DateTime_struct) : integer;
PowerBASIC
MSFL1_GetCurrentDataPos(BYVAL hSecurity AS DWORD,
pwRecordNum As Word,
psRecordDate AS DateTime_struct) As Long
Locking
* Prevent Write Lock

Return Values
* MSFL_NO_ERR if successful

e MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked

Parameters
ID Description
hSecurity Identifies the security.

pwRecordNum | Pointsto a WORD that receives the record number of the current data
position. If the record is a composite the record number is returned as
zero.

psRecordDate | Pointsto aDateTime struct structure (page 81) that receives the
date/time of price record at the current data position.

Remarks
* Gets the record number and the date/time of the price record at the current data
position. If the security is a composite the record number is returned as zero.

See Also

« MSFL1_FindDataDate (page 92)

e MSFL1_FindDataRec (page 93)

e MSFL1 SeekBeginData (page 123)
e MSFL1 SeekEndData (page 123)

96 « MetaStock File Library (MSFL) MetaStock®

MSFL1_GetDataPath

C
int MSFL1 GetDataPath(char cDirNumber,
LPSTR pszPath,
BOOL bRemoveTrailingSlash)

Visual Basic
MSFL1 GetDataPath(
ByVal cDirNumber As Byte,
ByVal pszPath As String,
ByVal bRemoveTrailingSlash As Long) As Long

Delphi
MSFL1_GetDataPath(cDirNumber : char;
pszPath : LPSTR;
bRemoveTrailingSlash : BOOL) : integer;
PowerBASIC
MSFL1_GetDataPath(BYVAL cDirNumber AS BYTE,
pszPath AS ASCI1Z,
BYVAL bRemoveTrailingSlash AS DWORD) As Long
Locking
* None

Return Values
* MSFL_NO_ERR if successful

e MSFL_ERR_DIR_NOT_OPEN if the specified directory is not open

Parameters

ID Description

cDirNumber |dentifies the directory.

pszPath Points to a null-terminated string that receives the path.

The path can be up to MSFL_MAX_PATH bytesin length.
bRemoveTrailingSlash | Specifies whether or not the trailing backslash should be
removed from the path.

(e.g. C:\MetaStock Data\Stocks\ would be returned as
C:\MetaStock Data\Stocks). Thisflag has no effect on
root paths (i.e. Cz\ will always be returned as C:\).

Remarks
» Getsthe path for the specified directory.

See Also

* MSFL1 GetDirectoryNumber (page 99)
* MSFL1_GetDirectorySatus (page 100)
e MSFL1_OpenDirectory (page 119)

MSFL1_GetDataRecordCount

C
int MSFL1_GetDataRecordCount(HSECURITY hSecurity,
WORD *pwNumOfDataRecs)

Visual Basic
MSFL1_GetDataRecordCount(ByVal hSecurity As Long,
pwNumOfDataRecs As Integer) As Long

Delphi

MSFL1_GetDataRecordCount(hSecurity : HSECURITY;
Var pwNumOfDataRecs : word) : integer;

MetaStock® MetaStock File Library (MSFL) « 97

PowerBASIC

MSFL1_GetDataRecordCount(BYVAL hSecurity AS DWORD,
pwNumOfDataRecs As Word) As Long

Locking

 Prevent Write Lock

Return Values

e MSFL_NO_ERR if successful

* MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked

Parameters
ID Description
hSecurity | dentifies the security.

pwNumOfDataRecs | Pointsto a WORD that receives the number of price records.

Remarks

« Gets the number of price records for the specified security.

» For composite securities, the number of price records returned is an estimate. The
actual number of records will be equal to or less than what is reported by this
function.

See Also
e MSFL1_GetRecordCountForDateRange (page 110)

MSFL1 GetDayMonthYear

C
int MSFL1_GetDayMonthYear (WORD *pwDay,
WORD *pwMonth,
WORD *pwYear,
long IDate);

Visual Basic

MSFL1_GetDayMonthYear(pwDay As Integer,
pwMonth As Integer,
pwYear As Integer,
Byval IDate As Long) As Long

Delphi
MSFL1_GetDayMonthYear(Var pwDay : word;
Var pwMonth : word;
Var pwYear : word
IDate:longint) : integer;
PowerBASIC
MSFL1_GetDayMonthYear(pwDay As Word,
pwMonth As Word,
pwYear As Word,
BYVAL IDate As Long) As Long
Locking
* None

Return Values
* MSFL_NO_ERR if successful

« MSFL_ERR_INVALID_DATE if the dateisinvalid

Parameters

ID Description

pwDay Points to a WORD that receives the day of the month.

pwMonth Points to a WORD that receives the month; January = 1, February = 2,
and so on.

98 MetaStock File Library (MSFL) MetaStock®

ID Description

pwYear Points to a WORD that receives the year. The year is always a four-digit
year (e.g., 2001).

IDate The MSFL date to be extracted.

Remarks

» Extractsan MSFL dateinto its components: day, month and year.
See Also

« MSFL1 FormatDate (page 94)

e MSFL1_GetHourMinTicks (page 104)

 MSFL1 MakeMSFLDate (page 117)

MSFL1 GetDirectoryNumber

C
int MSFL1_GetDirectoryNumber(LPCSTR pszPath,
char *pcDirNumber)
Visual Basic
MSFL1_GetDirectoryNumber(ByVal pszPath As String,
pcDirNumber As Byte) As Long
Delphi
MSFL1_GetDirectoryNumber(pszPath : LPCSTR;
Var pcDirNumber : char) : integer;
PowerBASIC
MSFL1_GetDirectoryNumber(pszPath AS ASCIIZ,
pcDirNumber AS BYTE) As Long
Locking
* None

Return Values

« MSFL_NO_ERR if successful

* MSFL_ERR_DIR_NOT_OPEN if the directory is not open

« MSFL_ERR_DIR_DOES NOT_EXIST if the directory does not exist

Parameters
ID Description
pszPath Points to a null-terminated string that contains the path.

The path can be up to MSFL_MAX_PATH bytesin length.

pcDirNumber | Pointsto a character that receives the directory number for the path.

Remarks
» Getsthe directory number associated with an open directory.

See Also

 MSFL1 GetDataPath (page 97)

* MSFL1_GetDirectorySatus (page 100)

e MSFL1_GetDirNumberFromHandle (page 100)
e MSFL1_OpenDirectory (page 119)

MetaStock® MetaStock File Library (MSFL) « 99

MSFL1_GetDirNumberFromHandle

C
int MSFL1_GetDirNumberFromHandle(HSECURITY hSecurity,
char *pcDirNumber)
Visual Basic
MSFL1_GetDirNumberFromHandle(ByVvVal hSecurity As Long,
pcDirNumber As Byte) As Long
Delphi
MSFL1_GetDirNumberFromHandle(hSecurity : HSECURITY;
Var pcDirNumber : char) : integer;
PowerBASIC
MSFL1_GetDirNumberFromHandle(BYVAL hSecurity AS DWORD,
pcDirNumber AS BYTE) As Long
Locking
¢ None

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_SECURITY_HANDLE if the handleisinvalid

Parameters
ID Description
hSecurity Identifies the security.

pcDirNumber | Points to a character that receives the directory number for the security.

Remarks
* Getsthe directory number for the specified security.

See Also
e MSFL1_GetSecurityHandle (page 111)

e MSFL1_GetDirectoryNumber (page 99)

MSFL1_GetDirectoryStatus

C
int MSFL1_GetDirectoryStatus(char cDirNumber,
LPCSTR pszDirectory,
MSFLDirectoryStatus_struct *psDirStatus)
Visual Basic
MSFL1 GetDirectoryStatus(ByVal cDirNumber As Byte,
ByVal pszDirectory As String,
psDirStatus As MSFLDirectoryStatus_struct) As Long
Delphi
MSFL1_GetDirectoryStatus(cDirNumber : char;
pszDirectory : LPCSTR;
Var psDirStatus : MSFLDirectoryStatus_struct) : integer;
PowerBASIC

MSFL1_GetDirectoryStatus(BYVAL cDirNumber AS BYTE,
pszDirectory AS ASCIIZ,
psDirStatus AS MSFLDirectoryStatus_struct) As Long

Locking

* None

Return Values

e MSFL_NO_ERR if successful

« MSFL_ERR_DIR_NOT_OPEN if the directory is not open

* MSFL_ERR_DIR_DOES NOT_EXIST if the directory does not exist

100 « MetaStock File Library (MSFL) MetaStock®

Parameters

ID

Description

cDirNumber

Identifies the directory. If zero, the path pointed to by pszDirectory is used
instead. The cDirNumber istypically used to obtain the status of an open
directory, while pszDirectory is typicaly used to obtain the status of a
closed directory.

pszDirectory

Points to a null-terminated string that contains the directory. This pointer
can beleft null if the directory is specified by cDirNumber.

psDirSatus

Points to an MSFLDirectorySatus_struct structure (page 101) that
receives the directory status. The dwTotal Sze member must be set to the
structure size before calling MSFL1_GetDirectorySatus (page 100).

Remarks

 Getsthe directory statusinformation.

« Thedirectory
the directory i

call: MSFL1_

can be specified either by cDirNumber or pszDirectory. For example, if
s open, the directory status can be retrieved by making the following
GetDirectoryStatus(cDirNumber, NULL,

&sDirStatus). If thedirectory isnot open, the directory status can be retrieved by
making the following call: MSFL1_GetDirectoryStatus(0,
szDirectory, &sDirStatus).

e The MSFLDirectorySatus _struct structure is defined as follows:
typedef struct

{
DWORD

BOOL
BOOL
BOOL
WORD
BOOL
BOOL
BOOL
char
DWORD

dwTotalSize;
bEXxists;

bInUse;
bMetaStockDir;
wDriveType;

bOpen;

bReadOnly;
bUserlInvalid;
cDirNumber;
dwNumOfSecurities;

} MSFLDirectoryStatus_struct;

Fields

ID

Description

dwTotal Size

The size of the structure, in bytes.

bExists

Boolean valueindicating if the directory exists.

blnUse

Boolean valueindicating if the directory isin use by one or more
MSFL users.

bMetaStockDir

Boolean valueindicating if the directory contains MetaStock files.

MetaStock®

MetaStock File Library (MSFL) « 101

ID

Description

wDriveType

The drive type, which can be any one of the following:
e MSFL_DRIVE_TYPE_UNKNOWN
The drive type is unknown.
¢ MSFL_DRIVE_TYPE_REMOVABLE
The drive isremovable media.
e MSFL_DRIVE TYPE_FIXED
Thedriveisfixed (i.e. ahard drive).
e MSFL_DRIVE_TYPE_REMOTE
The driveisremote (i.e. anetwork drive).
¢ MSFL_DRIVE_TYPE_CD_ROM
Thedriveisaloca CD-ROM drive — network CD-ROM drives are
reported as remote drives.
¢ MSFL_DRIVE_TYPE_RAM_DISK
ThedriveisaRAM disk.

bOpen

Boolean valueindicating if the directory is open.

bReadOnly

Boolean valueindicating if the directory is on read-only media. This
field isonly defined if the directory is open.

bUserlnvalid

Boolean value indicating if the user isinvalid. A user isinvalid when
another user with the same user 1D isforced into the directory already
in use by the current user. Thisfield isonly defined if the directory is
open.

cDirNumber

The directory number, if the directory is open.

dwNumOfSecurities

The number of securities in the directory, if the directory is open.
Remember if the directory is not open, bReadOnly, bUserInvalid,
cDirNumber, and dwNumOfSecurities are undefined. In other
words, the directory must be open to determineif the directory is
read-only.

See Also

« MSFL1_GetDataPath (page 97),

e MSFL1_GetDirectoryNumber (page 99),
e MSFL1_ GetSecurityCount (page 111)

« MSFL1 OpenDirectory (page 119)

MSFL1_GetErrorMessage

C

LPSTR MSFL1_GetErrorMessage(int iErr,
LPSTR pszErrorMessage,
WORD wMaxMsgLength)

Visual Basic

MSFL1_GetErrorMessage(ByVval iErr As Long,
ByVal pszErrorMessage As String,
ByVal wMaxMsglLength As Integer) As String

Delphi

MSFL1_ GetErrorMessage(iErr : integer;
pszErrorMessage : LPSTR;
wMaxMsgLength : WORD) : LPSTR;

PowerBASIC

MSFL1_GetErrorMessage(BYVAL iErr As Long,
pszErrorMessage AS ASCIIZ,
BYVAL wMaxMsgLength As Word) AS STRING

Locking
* None

102 « MetaStock File Library (MSFL)

MetaStock®

Note:

Return Values

* A pointer to the error message string.
The pointer returned is the same as the pointer passed as the input argument
pszErrorM essage

Parameters
ID Description
iErr Indicates the MSFL error.

pszErrorMessage | Points to a null-terminated string that receives the error message.

wMaxMsgLength| Indicates the maximum message length that pszErrorMessage can
receive, not including the terminating null.

The maximum length error message that the MSFL will returnis
defined by MSFL_MAX_ERR_MSG_LENGTH.

Remarks
» Returns astring error message for the specified MSFL error code.

See Also
e MSFL1 GetlLastFailedLocklnfo (page 105)

* MSFL1_GetlLastFailedOpenDirInfo (page 106)

MSFL1_GetFirstSecurityInfo

C
int MSFL1_GetFirstSecuritylnfo(char cDirNumber,
MSFLSecuritylnfo_struct *psSecuritylnfo)

Visual Basic
MSFL1 GetFirstSecuritylnfo(ByvVal cDirNumber As Byte,
psSecuritylnfo As MSFLSecuritylnfo_struct) As Long
Delphi
MSFL1 GetFirstSecuritylnfo(cDirNumber : char;
Var psSecuritylnfo : MSFLSecuritylnfo_struct) : integer;

PowerBASIC

MSFL1 GetFirstSecuritylnfo(BYVAL cDirNumber AS BYTE,
psSecuritylnfo AS MSFLSecuritylnfo_struct) As Long

Locking

* None

Return Values

e MSFL_MSG_LAST_SECURITY_IN_DIR if successful and this security isthe last
security in the directory

 MSFL_NO_ERR if successful

e MSFL_ERR_SECURITY_NOT_FOUND if the directory is empty

Parameters

ID Description
cDirNumber Identifies the directory.

psSecuritylnfo | Pointsto an MSFLSecuritylnfo_struct structure (page 82) that receives
the security information. The dwTotal Sze member must be set to the
structure size before calling MSFL1_GetFirstSecuritylnfo.

Remarks
« Gets the security information for the first security in the directory.

If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

MetaStock®

MetaStock File Library (MSFL) « 103

See Also
e MSFL1_GetlLastSecuritylnfo (page 106)

e MSFL1_ GetNextSecuritylnfo (page 108)
e MSFL1_GetPrevSecuritylnfo (page 109)
 MSFL1_ GetSecuritylnfo (page 113)

e MSFL2_GetSecurityHandles (page 125)

MSFL1 GetHourMinTicks

C
int MSFL1 GetHourMinTicks(WORD *pwHour,
WORD *pwMin,
WORD *pwTicks,
long ITime);
Visual Basic
MSFL1_GetHourMinTicks(pwHour As Integer,
pwMin As Integer,
pwTicks As Integer,
Byval 1Time As Long) As Long
Delphi
MSFL1_GetHourMinTicks(Var pwHour : word;
Var pwMin : word;
Var pwTicks : word;
ITime : longint) : integer;
PowerBASIC
MSFL1_GetHourMinTicks(pwHour As Word,
pwMin As Word,
pwTicks As Word,
BYVAL ITime As Long) As Long

Locking

* None

Return Values

« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_TIME if thetimeisinvalid

Parameters

ID Description

pwHour | Pointsto a WORD that receives the hour. The hour is alwaysin 24-hour
format.

pwMin Pointsto a WORD that receives the minutes.
pwTicks | Pointsto a WORD that receives the ticks.
[Time The MSFL time to be extracted.

Remarks
» Extractsan MSFL time into its components: hour, minutes and ticks.

See Also

e MSFL1_FormatTime (page 95)

* MSFL1_GetDayMonthYear (page 98)
e MSFL1 MakeMSFLTime (page 118)

104 « MetaStock File Library (MSFL) MetaStock®

MSFL1_GetLastFailedLockInfo

C

int MSFL1_ GetLastFailedLockInfo(LPSTR pszAppName,
LPSTR pszUserName,
UINT *puiUsersWithLock,
UINT *puilLockType)

Visual Basic

MSFL1_GetLastFailedLockInfo(ByVal pszAppName As String,
ByVal pszUserName As String,
puiUsersWithLock As Long,
puilLockType As Long) As Long

Delphi

MSFL1_GetLastFailedLockInfo(pszAppName : LPSTR;
pszUserName : LPSTR;
Var puiUsersWithLock : UINT;
Var puilLockType : UINT) : integer;

PowerBASIC

MSFL1_GetLastFailedLockInfo(pszAppName AS ASCI1Z,

Locking
* None

Return Values

pszUserName AS ASCI1Z,
puiUsersWithLock AS DWORD,
puilLockType AS DWORD) As Long

* MSFL_NO_ERR if successful

Parameters

ID Description

pszAppName Points to a null-terminated string that receives the application name.
The application name can be up to
MSFL_MAX_APP_NAME_LENGTH bytes, not including the
terminating null.

pszUserName Points to a null-terminated string that receives the user name. The

user name can beup to MSFL_MAX_USER_NAME_LENGTH
bytes, not including the terminating null. If the security was not
locked, the user nameisreturned as “no users.” If the user is
unknown, the user name is returned as “unknown user.”

puiUsersWithL ock

Points to an unsigned integer that receives the number of usersthat
had the security locked.

puiLockType

Points to an unsigned integer that receives the lock type. Following
are the possible lock types.
« MSFL_LOCK_PREV_WRITE_LOCK
The security is prevent write locked.
« MSFL_LOCK_WRITE LOCK
The security iswrite locked.
« MSFL_LOCK_FULL_LOCK
The security isfull locked.

Remarks

 Gets the user information for the user(s) who had the security locked when the last

security lock failed. If multiple users had the security locked, the application name
and user name are returned blank.

See Also

e MSFL1 LockSecurity (page 116)
* MSFL1_GetErrorMessage (page 102)

MetaStock®

MetaStock File Library (MSFL) « 105

MSFL1_GetLastFailedOpenDirinfo

C
int MSFL1_GetLastFailedOpenDirInfo(LPSTR pszAppName,
LPSTR pszUserName)
Visual Basic
MSFL1_GetLastFailedOpenDiriInfo(ByVval pszAppName As String,
ByVal pszUserName As String) As Long
Delphi
MSFL1_GetLastFailedOpenDiriInfo(pszAppName : LPSTR;
pszUserName : LPSTR) : integer;
PowerBASIC
MSFL1_GetLastFailedOpenDirInfo(pszAppName AS ASCI1Z,
pszUserName AS ASCI1Z) As Long
Locking
* None

Return Values
* MSFL_NO_ERR if successful

Parameters

ID Description

pszAppName | Points to a null-terminated string that receives the application name.
The application name can be up to
MSFL_MAX_APP_NAME_LENGTH bytes, not including the
terminating null.

pszUserName | Points to a null-terminated string that receives the user name.

The user name can be up to MSFL_MAX_USER_NAME_LENGTH
bytes, not including the terminating null. If anon-MSFL applicationis
using the directory, the user name is returned blank.

Remarks

 Getsthe user information for the last failed directory open. If the directory isin use by
anon-MSFL application or if the user is already using the directory, this function can
be used to retrieve the user information and display a message for the user.

Note: This function will only return the user information if MSFL1_OpenDirectory (page 119)
failswith an MSFL_ERR_USER_ID_ALREADY _IN_DIR or an
MSFL_ERR_NON_MSFL_USER_IN_DIR error.

See Also
e MSFL1_OpenDirectory (page 119)

e MSFL1_GetErrorMessage (page 102)

MSFL1_GetLastSecurityInfo

C
int MSFL1 GetLastSecuritylnfo(char cDirNumber,
MSFLSecuritylnfo_struct *psSecuritylnfo)
Visual Basic
MSFL1_GetLastSecuritylnfo(ByVval cDirNumber As Byte,
psSecuritylnfo As MSFLSecuritylnfo_struct) As Long
Delphi
MSFL1_GetLastSecuritylnfo(cDirNumber : char;
Var psSecuritylnfo : MSFLSecuritylnfo_struct) : integer;
PowerBASIC

MSFL1_GetLastSecuritylnfo(BYVAL cDirNumber AS BYTE,
psSecuritylnfo AS MSFLSecuritylnfo_struct) As Long

106 « MetaStock File Library (MSFL) MetaStock®

Note:

Locking
* None

Return Values
e MSFL_MSG_FIRST_SECURITY_IN_DIR if successful and this security isthe
first security in the directory

* MSFL_NO_ERR if successful
e MSFL_ERR_SECURITY_NOT_FOUND if the directory is empty

Parameters

ID Description

cDirNumber |dentifies the directory.

psSecuritylnfo | Pointsto an MSFLSecuritylnfo_struct structure (page 82) that receives
the security information. The dwTotal Sze member must be set to the
structure size before calling MSFL1_GetL astSecurityInfo.

Remarks
 Getsthe security information for the last security in the directory.

If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

See Also
* MSFL1 GetFirstSecuritylnfo (page 103)

« MSFL1_ GetNextSecuritylnfo (page 108)
MSFL1_GetPrevSecuritylnfo (page 109)
MSFL1_GetSecuritylnfo (page 113)

MSFL2_GetSecurityHandles (page 125)

MSFL1 GetMSFLState
C
int MSFL1_GetMSFLState(void)
Visual Basic
MSFL1_GetMSFLState() As Long
Delphi
MSFL1_GetMSFLState : integer;
PowerBASIC
MSFL1 GetMSFLState() As Long
Locking
¢ None
Return Values
e MSFL_STATE_INITIALIZED The MSFL isinitialized and available for use
e MSFL_STATE_UNINITIALIZED The MSFL has not been initialized and must be
initialized before any of the MSFL functions can be used to access MetaStock files
* MSFL_STATE_CORRUPT The MSFL isin acorrupt state. The MSFL internal
tables have been damaged or the operating system has been corrupted. At this point
the MSFL should be shutdown and the application program should be terminated

Parameters
* None

Remarks
 Returnsthe state of the MetaStock file library.

MetaStock®

MetaStock File Library (MSFL) « 107

See Also
e MSFLZ Initialize (page 115)

e MSFL1_Shutdown (page 124)

MSFL1_ GetNextSecuritylnfo

C
int MSFL1_ GetNextSecuritylnfo(HSECURITY hSecurity,
MSFLSecuritylnfo_struct *psSecuritylnfo)
Visual Basic
MSFL1_GetNextSecuritylnfo(ByVval hSecurity As Long,
psSecuritylnfo As MSFLSecuritylnfo_struct) As Long
Delphi
MSFL1_GetNextSecuritylnfo(hSecurity : HSECURITY;
Var psSecuritylnfo : MSFLSecuritylnfo_struct) : integer;
PowerBASIC
MSFL1_GetNextSecuritylnfo(BYVAL hSecurity AS DWORD,
psSecurityInfo AS MSFLSecuritylnfo_struct) As Long
Locking
* None

Return Values
e MSFL_MSG_LAST_SECURITY_IN_DIR if successful and this security isthelast
security in the directory

* MSFL_NO_ERR if successful
« MSFL_ERR_SECURITY_NOT_FOUND if there are no more securitiesin the

directory
Parameters
ID Description
hSecurity Identifies the security. If the handleis zero, the current directory and

position from the last call to any one of the MSFL1_GetxooxSecurityl nfo
functionsis used. This allows the application to step through the list of
securities by repeated callsto thisfunction.

psSecuritylnfo | Pointsto an MSFLSecuritylnfo_struct structure (page 82) that receives
the security information. The dwTotal Sze member must be set to the
structure size before calling MSFL1_GetNextSecuritylnfo.

Remarks
* Getsthe security information for the next security in the directory.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

See Also
e MSFL1 GetFirstSecuritylnfo (page 103)

e MSFL1_GetlLastSecuritylnfo (page 106)
e MSFL1 GetPrevSecuritylnfo (page 109)
e MSFL1_ GetSecurityCount (page 111)

e MSFL1_GetSecuritylnfo (page 113)

e MSFL2_GetSecurityHandles (page 125)

108 « MetaStock File Library (MSFL) MetaStock®

MSFL1_GetPrevSecurityInfo

C
int MSFL1_GetPrevSecurityInfo(HSECURITY hSecurity,
MSFLSecuritylnfo_struct *psSecuritylnfo)
Visual Basic
MSFL1_GetPrevSecuritylnfo(ByVal hSecurity As Long,
psSecuritylnfo As MSFLSecuritylnfo_struct) As Long
Delphi
MSFL1_GetPrevSecuritylnfo(hSecurity : HSECURITY;
Var psSecuritylnfo : MSFLSecuritylnfo_struct) : integer;
PowerBASIC
MSFL1_GetPrevSecuritylnfo(BYVAL hSecurity AS DWORD,
psSecuritylnfo AS MSFLSecuritylnfo_struct) As Long
Locking
¢ None

Return Values

e MSFL_MSG_FIRST_SECURITY _IN_DIR if successful and this security isthe
first security in the directory

« MSFL_NO_ERR if successful

e MSFL_ERR_SECURITY_NOT_FOUND if there are no more securitiesin the

directory
Parameters
ID Description
hSecurity Identifies the security. If the handle is zero, the current directory and

position fromthelast call to any one of the MSFL1_ GetxxxxSecurityl nfo
functionsis used. This allows the application to step through the list of
securities by repeated calls to this function.

psSecuritylnfo | Pointsto an MSFLSecuritylnfo_struct structure (page 82) that receives
the security information. The dwTotal S ze member must be set to the
structure size before calling MSFL1_GetPrevSecuritylnfo.

Remarks
* Gets the security information for the previous security in the directory.

Note: If the security isnot locked when calling thisfunction, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary
securities.

See Also

* MSFL1_GetFirstSecuritylnfo (page 103)
e MSFL1_GetLastSecuritylnfo (page 106)
« MSFL1_ GetNextSecuritylnfo (page 108)

MSFL1_GetSecurityCount (page 111)

MSFL1_GetSecuritylnfo (page 113)

MSFL2_GetSecurityHandles (page 125)

MetaStock® MetaStock File Library (MSFL) « 109

MSFL1_GetRecordCountForDateRange

C
int MSFL1_GetRecordCountForDateRange(HSECURITY hSecurity,
const DateTime_struct *psFirstDate,
const DateTime_struct *psLastDate,
WORD *pwNumOfDataRecs)

Visual Basic
MSFL1_GetRecordCountForDateRange(ByVal hSecurity As Long,
psFirstDate As DateTime_struct,
psLastDate As DateTime_struct,
pwNumOfDataRecs As Integer) As Long

Delphi
MSFL1_GetRecordCountForDateRange(hSecurity : HSECURITY;
const psFirstDate : DateTime_struct;
const psLastDate : DateTime_struct;
Var pwNumOfDataRecs : word) : integer;

PowerBASIC
MSFL1_ GetRecordCountForDateRange(BYVAL hSecurity AS DWORD,
psFirstDate AS DateTime_struct,
psLastDate AS DateTime_struct,
pwNumOfDataRecs As Word) As Long
Locking
¢ Prevent Write Lock

Return Values
« MSFL_NO_ERR if successful

« MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records

Parameters

ID Description

hSecurity Identifies the security.

psFirstDate Pointsto a DateTime_struct structure (page 81) that specifiesthe
date/time of the first record in the date range.

psLastDate Pointsto a DateTime_struct structure (page 81) that specifiesthe
date/time of the last record in the date range.

pwNumOfDataRecs | Pointsto a WORD that receives the number of price records within
the specified date range.

Remarks

» Getsthe number of price records within a date range.

« For composite securities, the number of price records returned is an estimate. The
actual number of records will be equal to or less than what is reported by this
function.

See Also
* MSFL1_GetDataRecordCount (page 97)

110 « MetaStock File Library (MSFL) MetaStock®

MSFL1_GetSecurityCount

C
int MSFL1_GetSecurityCount(char cDirNumber,
DWORD *pdwNumOfSecurities)
Visual Basic
MSFL1_GetSecurityCount(ByVal cDirNumber As Byte,
pdwNumOfSecurities As Long) As Long
Delphi
MSFL1_GetSecurityCount(cDirNumber : char;
Var pdwNumOfSecurities : DWORD) : integer;
PowerBASIC
MSFL1_GetSecurityCount(BYVAL cDirNumber AS BYTE,
pdwNumOfSecurities AS DWORD) As Long
Locking
¢ None

Return Values

« MSFL_NO_ERR if successful

« MSFL_ERR_DIR_NOT_OPEN if the directory is not open

e MSFL_ERR_NOT_A_MS DIR if the directory does not contain MetaStock files

Parameters

ID Description

cDirNumber |dentifies the directory.

pdwNumOfSecurities | Pointsto the DWORD that receives the number of securitiesinthe
specified directory.

Remarks
 Gets the number of securities in the directory.

See Also
 MSFL1 GetDirectorySatus (page 100)

MSFL1_GetSecurityHandle

C
int MSFL1_GetSecurityHandle(MSFLSecurityldentifier_struct
*psSecuritylD,
HSECURITY *phSecurity)
Visual Basic

MSFL1_GetSecurityHandle(psSecuritylD
As MSFLSecurityldentifier_struct,
phSecurity As Long) As Long

Delphi
MSFL1_GetSecurityHandle(const psSecuritylD :
MSFLSecurityldentifier_struct;
Var phSecurity : HSECURITY) : integer;
PowerBASIC
MSFL1_GetSecurityHandle(psSecuritylD AS
MSFLSecurityldentifier_struct,
phSecurity AS DWORD) As Long
Locking
* None

Return Values
* MSFL_NO_ERR if successful

« MSFL_ERR_SECURITY_NOT_FOUND if the security is not found

MetaStock®

MetaStock File Library (MSFL) « 111

Parameters

ID Description

psSecurityl D | Pointsto an MSFLSecurityldentifier_struct structure that specifies the
security. The dwTotal Sze member must be set to the structure size before
calling MSFL1_GetSecurityHandle.

phSecurity Pointsto an HSECURITY that receives the security handle for the

specified security.
Remarks
» Getsthe security handle for the specified security.
See Also

e MSFL1_GetSecuritylD (page 112)
e MSFL2_GetSecurityHandles (page 125)

MSFL1_ GetSecuritylD

C
int MSFL1_GetSecurityID(HSECURITY hSecurity,
MSFLSecurityldentifier_struct *psSecuritylD)
Visual Basic
MSFL1_GetSecuritylD(ByVal hSecurity As Long,
psSecuritylD As MSFLSecurityldentifier_struct) As Long
Delphi
MSFL1_GetSecurityID(hSecurity : HSECURITY;
Var psSecuritylD : MSFLSecurityldentifier_struct) :
integer;
PowerBASIC
MSFL1_GetSecuritylD(BYVAL hSecurity AS DWORD,
psSecuritylD AS MSFLSecurityldentifier_struct) As Long
Locking
* None
Return Values
« MSFL_NO_ERR if successful

* MSFL_ERR_SECURITY_NOT_FOUND if the security has been deleted or if the
handleisinvalid

Parameters
ID Description
hSecurity I dentifies the security.

psSecuritylD | Pointsto an MSFLSecurityldentifier_struct structure (page 112) that
receives the security identifier. The dwTotal S ze member must be set to
the structure size before calling MSFL1_GetSecuritylD.

Remarks
» Getsthe security identifier for the specified security.

e The MSFLSecurityldentifier_struct structure is defined as follows.
typedef struct

DWORD dwTotalSize;

char cDirNumber;
char szSymbol[MSFL_MAX_ SYMBOL_LENGTH+1];
char cPeriodicity;
WORD wlinterval;
BOOL bComposite;
char szCompSymbol [MSFL_MAX_ SYMBOL_LENGTH+1];
char cCompOperator;

} MSFLSecurityldentifier_struct;

112 « MetaStock File Library (MSFL) MetaStock®

Fields

ID Description
dwTotalSize The size of the structure, in bytes.

cDirNumber The directory number returned by the MSFL1_OpenDirectory
(page 119) function.

szSymbol The security’s ticker symbol. If this security is acomposite, thisis the
symbol of the primary security. The maximum length of the symbol, not
including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cPeriodicity The periodicity of the security (i.e. “D"aily, “W”eekly, “M”onthly, or
“I"ntraday). The valid periodicity’s are defined, in a string, by
MSFL_VALID_PERIODICITIES.

winterval The intraday interval of the security. Thisfield indicates theinterval, in
minutes, between price data. For tick data and non-intraday securities,
thisfield is set to zero. The minimum interval is defined by
MSFL_MIN_INTERVAL and the maximum interval is defined by
MSFL_MAX_INTERVAL.

bComposite Boolean value indicating if the security is a composite.

szCompSymbol | The symbol of the secondary security in the composite. If this security is
not a composite, sZCompSymbol is anull string. The maximum length
of the symbol, not including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cCompOperator | The composite operator (i.e. the mathematical operation to perform
between the two securities in the composite: +, -, *, /). Thevalid
operators are defined, in astring, by MSFL_VALID_OPERATORS. If
the security is not acomposite, it is zero.

See Also
 MSFL1 GetSecurityHandle (page 111)

o MSFL2_GetSecurityHandles (page 125)

MSFL1_GetSecurityInfo

C
int MSFL1_GetSecurityInfo(HSECURITY hSecurity,
MSFLSecuritylnfo_struct *psSecuritylnfo)
Visual Basic
MSFL1 GetSecuritylnfo(ByVal hSecurity As Long,
psSecuritylnfo As MSFLSecuritylnfo_struct) As Long
Delphi
MSFL1 GetSecuritylnfo(hSecurity : HSECURITY;
Var psSecuritylnfo : MSFLSecuritylnfo_struct) : integer;
PowerBASIC
MSFL1 GetSecuritylnfo(BYVAL hSecurity AS DWORD,
psSecuritylnfo AS MSFLSecuritylnfo_struct) As Long
Locking
¢ None

Return Values
e MSFL_NO_ERR if successful

e MSFL_ERR_SECURITY_NOT_FOUND if the security has been deleted or if the
handleisinvalid

MetaStock® MetaStock File Library (MSFL) « 113

Parameters

ID Description

hSecurity Identifies the security.

psSecuritylnfo | Pointstothe MSFLSecuritylnfo_struct structure (page 82) that receives
the security information. The dwTotal Sze member must be set to the
structure size before calling MSFL1_GetSecuritylnfo.

Remarks
» Getsthe security information for the specified security.

Note: If the security isnot locked when calling thisfunction, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates for
composite securities may not reflect changes made to the primary or secondary securities.

See Also
MSFL1_ GetFirstSecuritylnfo (page 103)

MSFL1 GetLastSecuritylnfo (page 106)
MSFL1_GetNextSecuritylnfo (page 108)
MSFL1_ GetPrevSecuritylnfo (page 109)
MSFL2_GetSecurityHandles (page 125)

MSFL1_GetSecurityLockedStatus

C
int MSFL1_GetSecuritylLockedStatus(HSECURITY hSecurity,
int *pilLockStatus,
UINT *puilLockType)

Visual Basic
MSFL1_GetSecuritylLockedStatus(ByVal hSecurity As Long,
piLockStatus As Long,
puilLockType As Long) As Long

Delphi
MSFL1_GetSecuritylLockedStatus(hSecurity : HSECURITY;
Var pilLockStatus : integer;
Var puilLockType : UINT) : integer;
PowerBASIC
MSFL1_GetSecuritylLockedStatus(BYVAL hSecurity AS DWORD,
piLockStatus As Long,
puilLockType AS DWORD) As Long
Locking
* None

Return Values
« MSFL_NO_ERR if successful

« MSFL_ERR_SECURITY_NOT_FOUND if the security could not be found

114 « MetaStock File Library (MSFL) MetaStock®

Parameters

ID Description

hSecurity Identifies the security.

piLockStatus | Pointsto an integer that receives the lock status.
Following are the possible lock status codes.
* MSFL_LOCK_STATUS UNLOCKED
The security is not locked by this user or any other user.
* MSFL_LOCK_STATUS LOCKED_CURRENT
The security islocked by this user.
 MSFL_LOCK_STATUS LOCKED_OTHER
The security islocked by another user.
* MSFL_LOCK_STATUS LOCKED_COMP_CUR
The security is locked as part of a composite security by this user.
* MSFL_LOCK_STATUS LOCKED_COMP_OTH
The security islocked as part of acomposite security by another user.

puiLockType | Pointsto an UINT that receives the lock type. Following are the possible
lock types.
« MSFL_LOCK_PREV_WRITE_LOCK
The security is prevent write locked.
« MSFL_LOCK_WRITE_LOCK
The security iswrite locked.
« MSFL_LOCK_FULL_LOCK
The security is full locked.

Remarks
» Getsthelock status of the specified security.

See Also
e MSFL1 LockSecurity (page 116)

e MSFL1_UnlockSecurity (page 124)

MSFL1_Initialize

C
int MSFL1 Initialize(LPCSTR pszAppName,
LPCSTR pszUserName,
int ilnterfaceVersion)
Visual Basic

MSFL1 Initialize(ByVal pszAppName As String,
ByVal pszUserName As String,
ByVal ilnterfaceVersion As Long) As Long
Delphi
MSFL1_Initialize(pszAppName : LPCSTR;
pszUserName : LPCSTR;
iInterfaceVersion: integer) : integer;
PowerBASIC

MSFL1 Initialize(pszAppName AS ASCIIZ,
pszUserName AS ASCI1Z,
BYVAL ilnterfaceVersion As Long) As Long

Locking

* None

Return Values

* MSFL_NO_ERR if successful

e MSFL_ERR_ALREADY_INITIALIZED if the MSFL is currently initialized

« MSFL_ERR_INSUFFICIENT_MEM if thereisinsufficient memory to initialize
the MSFL

e MSFL_ERR_INVALID_USER_ID if the application name and/or user name are
invalid

MetaStock®

MetaStock File Library (MSFL) « 115

Parameters

ID Description

pszAppName Points to a null-terminated string that contains the application name.
The maximum length of the application name is defined by
MSFL_MAX_APP_NAME_LENGTH.

pszUserName Points to a null-terminated string that contains the user name.

The maximum length of the user name is defined by
MSFL_MAX_USER_NAME_LENGTH.

ilnterfaceVersion | Indicatesthe MSFL DLL interface version. The current DLL interface
version isdefined by MSFL_DLL_INTERFACE_VERSION and can
simply be passed into the MSFL 1_Initialize function.

Remarks

« Initializes the MetaStock File Library by creating the internal tables and buffers.
Once the MSFL is successfully initialized, it cannot be initialized again without first
shutting down. Also, if the application successfully initializes the MSFL, it must shut
down the MSFL (viaMSFL1_Shutdown (page 124) before exiting. Failure to do so
may cause corruption of files and memory leaks. It may also keep directories open
and securities locked.

» The application and user names constitute the MSFL user ID. The MSFL user ID is
used to distinguish between usersin a data directory. By including the application
name, the same user can access the same directory with two different applications
(e.g. MetaStock and The DownL oader).

Note: Before calling this function, you must setup the key structure as documented in the
Initialization section (page 87).

See Also
« MSFL1 GetMSFLSate (page 107)

e MSFL1_Shutdown (page 124)

MSFL1_LockSecurity

C
int MSFL1_ LockSecurity(HSECURITY hSecurity,
UINT uiLockType)
Visual Basic

MSFL1_LockSecurity(ByVal hSecurity As Long,
ByVal uiLockType As Long) As Long

Delphi
MSFL1_LockSecurity(hSecurity : HSECURITY;
uiLockType : UINT) : integer;
PowerBASIC
MSFL1_LockSecurity(BYVAL hSecurity AS DWORD,
BYVAL uiLockType AS DWORD) As Long
Locking
* None

Return Values

 MSFL_NO_ERR if successful

* MSFL_ERR_TOO_MANY_SEC L OCKED if the application attempted to lock
more than the maximum number of securities
(i.,e. MSFL_MAX_LOCKED_SECURITIES)

* MSFL_ERR_SECURITY_LOCKED if the security islocked by this or another
application

116 « MetaStock File Library (MSFL) MetaStock®

Note:

Parameters

ID Description

hSecurity Identifies the security to lock.

uiLockType | Specifiesthe lock type. Applications reading MetaStock price data can
simply passMSFL_LOCK_PREV_WRITE_LOCK.

Remarks

» Locks the specified security. For more information on security locking and the lock
types, see Security Locking (page 87).

« An application cannot concurrently lock the same security multiple times. Nor can an
application lock more than the maximum number of locked securities per application
(i.ee MSFL_MAX_LOCKED_SECURITIES).

When locking composite securities, the primary and secondary securities are also locked.
In addition, composite securities cannot be write locked.

See Also
e MSFL1 GetlLastFailedLocklnfo (page 105)

« MSFL1 GetSecuritylockedSatus (page 114)
e MSFL1_UnlockSecurity (page 124)

MSFL1_MakeMSFLDate

C

int MSFL1_MakeMSFLDate(long *plDate,
WORD wMonth,
WORD wDay,
WORD wYear);

Visual Basic
MSFL1_MakeMSFLDate(plDate As Long,
ByvVal wMonth As Integer,
Byval wDay As Integer,
ByVal wYear As Integer) As Long
Delphi
MSFL1_MakeMSFLDate(Var plDate : longint;
wMonth : word;
wDay : word;
wYear - word) : integer;
PowerBASIC

MSFL1_MakeMSFLDate(plDate As Long,
BYVAL wMonth As Word,
BYVAL wDay As Word,
BYVAL wYear As Word) As Long

Locking
* None

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_DATE if the constructed dateisinvalid
Parameters

ID Description

plDate Points to along that receives the MSFL date.

wMonth | The month; January = 1, February = 2, and so on.

wDay The day of the month.

MetaStock®

MetaStock File Library (MSFL) « 117

ID Description

wYear The year. The year can be two or four digits. If the year istwo digits, the
Windows cutoff year is used to determine the century. If the Windows cutoff
year is not found in the registry, adefault cutoff year of twenty-nineis used.
In other words, if the two-digit year isless than or equal to twenty-nine,
MSFL1_MakeMSFLDate (page 117) will assume the century to be 2000.
If the two-digit year is greater than twenty-nine, a century of 1900 will be
assumed.

Remarks
» Constructs an MSFL date from its components: day, month and year.

See Also

e MSFL1_FormatDate (page 94)

« MSFL1_GetDayMonthYear (page 98)
* MSFL1_MakeMSFLTime (page 118),
e MSFL1 ParseDateSring (page 120)

MSFL1 MakeMSFLTime

C
int MSFL1_MakeMSFLTime(long *plITime,
WORD wHour,
WORD wMin,
WORD wTicks);

Visual Basic

MSFL1_MakeMSFLTime(pITime As Long,
Byval wHour As Integer,
ByvVal wMin As Integer,
ByVal wTicks As Integer) As Long
Delphi
MSFL1_MakeMSFLTime(Var plTime : longint;
wHour : word;
wMin I word;
wTicks : word) : integer;
PowerBASIC

MSFL1_MakeMSFLTime(pITime As Long,
BYVAL wHour As Word,
BYVAL wMin As Word,
BYVAL wTicks As Word) As Long

Locking
* None

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_TIME if the constructed timeisinvalid
Parameters

ID Description
plTime | Pointsto along that receivesthe MSFL time.

wHour | The hour; must be in 24-hour format.
wMin The minutes.

wTicks | Theticks. In cases where the ticks are unknown or not relevant, passin zero for
theticks.

Remarks
 Constructs an MSFL time from its components: hour, minutes and ticks.

118 « MetaStock File Library (MSFL) MetaStock®

See Also
* MSFL1_FormatTime (page 95)

e MSFL1_GetHourMinTicks (page 104)
e MSFL1 MakeMSFLDate (page 117)
e MSFL1_ParseTimeSring (page 121)

MSFL1_OpenDirectory

C
int MSFL1_ OpenDirectory(LPCSTR pszDirectory,
char *pcDirNumber,
int iDirOpenFlags)
Visual Basic
MSFL1_OpenDirectory(ByVal pszDirectory As String,
pcDirNumber As Byte,
ByVal iDirOpenFlags As Long) As Long
Delphi
MSFL1_OpenDirectory(pszDirectory : LPCSTR;
Var pcDirNumber : char;
iDirOpenFlags : integer) : integer;
PowerBASIC
MSFL1_OpenDirectory(pszDirectory AS ASCIIZ,
pcDirNumber AS BYTE,
BYVAL iDirOpenFlags As Long) As Long
Locking
* None

Return Values
*« MSFL_MSG_NOT_A_METASTOCK_DIR if successful, but the directory does
not contain MetaStock files

* MSFL_NO_ERR if successful

e MSFL_ERR_DIR_ALREADY_OPEN if the application has the directory open and
the MSFL_DIR_ALLOW_MULTI_OPEN flag was not passed to the open file

« MSFL_ERR_DIR_DOES NOT_EXIST if the directory does not exist

e MSFL_ERR_DUPLICATE_SECURITIESIf there are duplicate securitiesin the
directory and the MSFL_DIR_MERGE_DUP_SECS flag was not passed to the open

e MSFL_ERR_INVALID_DIR if thedirectory isinvalid

« MSFL_ERR_TOO_MANY_DIRS OPEN if the application has opened the
maximum number of directories (i.e. MSFL_MAX_OPEN_DIRECTORIES)

e MSFL_ERR_USER_ID_ALREADY_IN_DIR if auser with the same application
and user name has the directory open and the MSFL_DIR_FORCE_USER _IN flag
was not passed to the open

Parameters

ID Description
pszDirectory Points to a null-terminated string that contains the directory to open.

pcDirNumber | Points to a character that receives the directory number. The directory
number can be thought of a handle to the open directory. If the open fails,
the directory number is set to zero.

MetaStock® MetaStock File Library (MSFL) « 119

ID Description

iDirOpenFlags | Specifies the open flags. The flags provide additional tasks to perform
while opening the directory. Many of the tasks are provided to recover
from common errors. Multiple flags can be passed in by simply bitwise

OR-ing theflags (e.g. MSFL_DIR_ALLOW_MULTI1_OPEN |

MSFL_DIR_MERGE_DUP_SECS). The MSFL_DIR_NO_FLAGSIis

ignored when any other flags are used; the remaining flags can be used in

any combination.

Following isalist of the available directory open flags.

¢ MSFL_DIR_NO_FLAGS Standard directory open. Return an error if the
directory doesn’t exist, if the user isaready inthe directory, or if there are
duplicate securitiesin the directory.

¢ MSFL_DIR_FORCE_USER_IN Open adirectory that is already open by
auser with the same application and user name. This situation can occur if
the application terminated without closing the directory or if another user
on the network is using the application with the same user name. Thisflag
should only be used in response to the
MSFL_ERR_USER_ID_ALREADY_IN_DIR error.

e MSFL_DIR_MERGE_DUP_SECS If the directory contains duplicate
securities, merge the price datafor all the duplicate securities. Thisflagis
generally used in response to the
MSFL_ERR_DUPLICATE_SECURITIES error.

e MSFL_DIR_ALLOW_MULTI_OPEN Allowsthe application to open the
same directory multiple times. The MSFL keeps reference count — each
timethe directory is opened the reference count is incremented, each time
the directory is closed the reference count is decremented. When the
reference count is equal to zero, the directory is closed.

Remarks

» Opensthe specified directory.

« Directories that do not contain MetaStock files can be opened; however, the
MSFL_MSG NOT_A_ METASTOCK_DIR message is returned and any M SFL
functions that operate with security or price data cannot be used.

« The number of concurrent open directoriesislimited to
MSFL_MAX_OPEN_DIRECTORIES.

See Also

e MSFL1 CloseDirectory (page 92)

« MSFL1_GetDirectoryNumber (page 99)

 MSFL1 GetDirectorySatus (page 100)

e MSFL1 GetLastFailedOpenDirlnfo (page 106)

MSFL1 ParseDateString

C
int MSFL1 ParseDateString(long *plDate,
LPCSTR pszDateString);
Visual Basic

MSFL1_ParseDateString(plDate As Long,
ByVal pszDateString As String) As Long

Delphi
MSFL1_ParseDateString(Var plDate : longint;
pszDateString : LPCSTR):integer;
PowerBASIC

MSFL1_ParseDateString(plDate As Long,
pszDateString AS ASCI1Z) As Long

120 « MetaStock File Library (MSFL) MetaStock®

Locking
* None

Return Values

« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_DATE if the constructed dateisinvalid

e MSFL_ERR_INVALID_FUNC_PARMS:if either parameter is null

Parameters
ID Description
plDate Points to along that receives the MSFL date.

pszDateString | Points to a null-terminated string that contains the date. The date must be
formatted according to the Windows short date format and use the same date

separator (e.g., ‘/").

Remarks

 Constructs an MSFL date from the date string. The year can be two or four digits.
If the year istwo digits, the Windows cutoff year is used to determine the century.
If the Windows cutoff year is not found in the registry, a default cutoff year of
twenty-nine is used. In other words, if the two-digit year islessthan or equal to
twenty-nine, MSFL1_ParseDateString will assume the century to be 2000.
If the two-digit year is greater than twenty-nine, a century of 1900 will be assumed.

See Also

* MSFL1_FormatDate (page 94)

* MSFL1_GetDayMonthYear (page 98)
e MSFL1 MakeMSFLDate (page 117)
e MSFL1_ ParseTimeSring (page 121)

MSFL1_ParseTimeString

C
int MSFL1 ParseTimeString(long *plTime,
LPCSTR pszTimeString);
Visual Basic
MSFL1_ParseTimeString(plTime As Long,
Byval pszTimeString As String) As Long
Delphi
MSFL1_ParseTimeString(Var ITime : longint;
pszTimeString : LPCSTR) : integer;
PowerBASIC
MSFL1_ParseTimeString(plTime As Long,
pszTimeString AS ASCII1Z) As Long
Locking
* None

Return Values

« MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_TIME if the constructed timeisinvalid

e MSFL_ERR_INVALID_FUNC_PARMS:if either parameter is null

Parameters
ID Description
plTime Points to along that receives the MSFL time.

pszTimeString | Pointsto a null-terminated string that contains the time. The time must be
formatted according to the Windows time format and use the same time

separator (e.g., ‘I’).

MetaStock® MetaStock File Library (MSFL) « 121

Remarks

 Constructs an MSFL time from the time string. If the time is read right-to-left, all
fields must be present (i.e., the ticks/seconds, minutes, hours). If the time isread |eft-
to-right, the minutes and ticks/seconds are optional. The time may be in either 24-
hour format or 12-hour format. If thetimeisin 12-hour format, the PM symbol must
be included in the time string.

See Also

e MSFL1_FormatTime (page 95)

e MSFL1_GetHourMinTicks (page 104)
 MSFL1 MakeMSFLTime (page 118),
e MSFL1_ ParseDateSring (page 120)

MSFL1_ReadDataRec

C
int MSFL1_ ReadDataRec(HSECURITY hSecurity,
MSFLPriceRecord_struct *psPriceRec)

Visual Basic

MSFL1_ReadDataRec(ByVal hSecurity As Long,
psPriceRec As MSFLPriceRecord_struct) As Long

Delphi
MSFL1_ReadDataRec(hSecurity : HSECURITY;
Var psPriceRec : MSFLPriceRecord_struct) : integer;
PowerBASIC
MSFL1_ReadDataRec(BYVAL hSecurity AS DWORD,
psPriceRec AS MSFLPriceRecord_struct) As Long
Locking

* Prevent Write Lock

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_END_OF_FILE if the current data position is past the end of thefile
Parameters

ID Description
hSecurity | dentifies the security.

psPriceRec | Pointsto an MSFLPriceRecord_struct structure (page 84) that receives
the price record.

Remarks
» Readsthe price record at the current data position.
If successful, the current data position is advanced to the next record.

See Also

* MSFL2_ReadBackMultipleRecs (page 126)

e MSFL2_ReadDataRec (page 127)

* MSFL2_ReadMultipleRecs (page 128)

¢ MSFL2_ReadMultipleRecsByDates (page 129)

122 « MetaStock File Library (MSFL) MetaStock®

MSFL1_SeekBeginData

C
int MSFL1_SeekBeginData(HSECURITY hSecurity)

Visual Basic
MSFL1_SeekBeginData(ByVal hSecurity As Long) As Long

Delphi

Fl)\/ISFLl_SeekBeginData(hSecurity : HSECURITY) : integer;
PowerBASIC

MSFL1_SeekBeginData(BYVAL hSecurity AS DWORD) As Long
Locking

* Prevent Write Lock

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked

Parameters

ID Description
hSecurity Identifies the security.
Remarks

* Movesthe current data position to the first price record.
Unlike MSFL1_SeekEndData, this function can be used with composite securities.

See Also

e MSFL1 FindDataDate (page 92)

e MSFL1_FindDataRec (page 93)

e MSFL1_ GetCurrentDataPos (page 96)
e MSFL1 SeekEndData (page 123)

MSFL1 SeekEndData

C
int MSFL1_SeekEndData(HSECURITY hSecurity)

Visual Basic
MSFL1_SeekEndData(ByVal hSecurity As Long) As Long

Delphi

MSFL1_SeekEndData(hSecurity : HSECURITY) : integer;
PowerBASIC

MSFL1_SeekEndData(BYVAL hSecurity AS DWORD) As Long
Locking

* Prevent Write Lock

Return Values
e MSFL_NO_ERR if successful

« MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

ID Description

hSecurity | Identifiesthe security.

Remarks
* Movesthe current data position to the end of the price data. Thisfunction isgenerally
used to move the current data position in preparation for appending price records.

Note: This function cannot be used with composite securities.

MetaStock® MetaStock File Library (MSFL) « 123

See Also

 MSFL1 FindDataDate (page 92)

e MSFL1_FindDataRec (page 93)

e MSFL1_GetCurrentDataPos (page 96)
 MSFL1 SeekBeginData (page 123)

MSFL1_Shutdown

C

int MSFL1_Shutdown(void)

Visual Basic
MSFL1_Shutdown() As Long

Delphi

MSFL1_Shutdown : integer;

PowerBASIC
MSFL1_Shutdown() As Long

Locking
* None

Return Values
« MSFL_NO_ERR if successful

e MSFL_ERR_NOT_INITIALIZED if the MSFL is not initialized

Parameters

* None
Remarks

« Shuts down the previously initialized MetaStock file library. During shutdown, all

open files are closed and the internal tables and buffers are freed.

See Also

e MSFL1 GetMSFLSate (page 107)
e MSFL1 Initialize (page 115)

MSFL1 UnlockSecurity

C

int MSFL1 _UnlockSecurity(HSECURITY hSecurity)

Visual Basic
MSFL1 _UnlockSecurity(ByVal hSecurity As Long) As Long

Delphi

MSFL1_UnlockSecurity(hSecurity :

PowerBASIC
MSFL1_UnlockSecurity(BYVAL hSecurity AS DWORD) As Long

Locking
* None

Return Values
e MSFL_NO_ERR if successful

« MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

HSECURITY) :

integer;

ID

Description

hSecurity

I dentifies the security to unlock.

124 « MetaStock File Library (MSFL)

MetaStock®

Remarks

 Unlocks the specified security.

« When the security isunlocked, any changesto the security information (e.g. first date, last
date, security name, etc.) are saved to the security file. All associated files are closed.

See Also

e MSFL1_ GetSecuritylockedSatus (page 114)

e MSFL1_LockSecurity (page 116)

MSFL2_GetSecurityHandles

C
int MSFL2_GetSecurityHandles(char cDirNumber,
HSECURITY hStartingSecurity,
DWORD dwMaxHandles,
HSECURITY *pahSecurity,
DWORD *pdwHandleCount)

Visual Basic

MSFL2_GetSecurityHandles(ByVal cDirNumber As Byte,
ByVal hStartingSecurity As Long,
Byval dwMaxHandles As Long,
pahSecurity As Long,
pdwHandleCount As Long) As Long

Delphi
MSFL2_GetSecurityHandles(cDirNumber : char;
hStartingSecurity : HSECURITY;
dwMaxHandles : DWORD;
Var pahSecurity : HSECURITY;
Var pdwHandleCount : DWORD) : integer;
PowerBASIC
MSFL2_GetSecurityHandles(BYVAL cDirNumber AS BYTE,
BYVAL hStartingSecurity As Long,
BYVAL dwMaxHandles AS DWORD,
pahSecurity AS DWORD,
pdwHandleCount AS DWORD) As Long
Locking
* None

Return Values
« MSFL_NO_ERR if successful
e MSFL_ERR_DIR_NOT_OPEN if the directory is not open

« MSFL_ERR_INVALID_SECURITY_HANDLE if the starting security handle s
invalid

Parameters
ID Description
cDirNumber Identifies the directory.

hStartingSecurity | Identifies the first security of the block. To start at the first security in
adirectory, the handle can be set to zero or to the security handle of
the first security. Otherwise, it must be set to a valid security handle
within the directory.

dwMaxHandles | Specifiesthe maximum number of handlesto be stored in the array
pointed to by pahSecurity.

pahSecurity Pointsto an array of HSECURITY that receives the block of security
handles.

pdwHandleCount | Pointsto a DWORD that receives the actual number of handles

returned in the array pointed to by pahSecurity.

MetaStock®

MetaStock File Library (MSFL) « 125

Remarks
 Gets the security handles for a block of securities.

See Also

* MSFL1_GetFirstSecuritylnfo (page 103)
 MSFL1_GetlLastSecuritylnfo (page 106)
* MSFL1 GetNextSecuritylnfo (page 108)
e MSFL1_GetPrevSecuritylnfo (page 109)
e MSFL1 GetSecurityCount (page 111)

e MSFL1 GetSecuritylnfo (page 113)

MSFL2_ ReadBackMultipleRecs

C
int MSFL2_ReadBackMultipleRecs(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psLastRecDate,
WORD *pwReadCount,
int iFindMode)

Visual Basic
MSFL2_ReadBackMultipleRecs(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psLastRecDate As DateTime_struct,
pwReadCount As Integer,
ByVal iFindMode As Long) As Long
Delphi
MSFL2_ReadBackMultipleRecs(hSecurity : HSECURITY;
Var pasPriceRec: MSFLPriceRecord_struct;
const psLastRecDate : DateTime_struct;
Var pwReadCount : word;
iFindMode : integer) : integer;
PowerBASIC
MSFL2_ReadBackMultipleRecs(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psLastRecDate AS DateTime_struct,
pwReadCount As Word,
BYVAL iFindMode As Long) As Long

Locking
* Prevent Write Lock

Return Values
e MSFL_MSG_LESS RECORDS READ if successful, but fewer records were read
than requested

MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_RECORDSIf theread count isinvalid
MSFL_ERR_END_OF_FILE if the current data position is past the end of thefile
« MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records

Parameters
ID Description
hSecurity Identifies the security.

pasPriceRec | Pointsto an MSFLPriceRecord_struct structure (page 84) array that
receives the price records.

psLastRecDate| Pointsto a DateTime_struct structure (page 81) that contains the
date/time of the record at which to start reading.

126 « MetaStock File Library (MSFL) MetaStock®

ID

Description

pwReadCount

Pointsto aWORD that contains the number of recordsto read. It also
receives the actual number of records read. The maximum records that can
be read per cal islimited to MSFL_MAX_READ_WRITE_RECORDS.

iFindMode

Indicates what type of search to perform to locate the price record at
which to start reading.
Following are the different modes available.
« MSFL_FIND_CLOSEST_PREV
If an exact match is not found, find the previous closest record.
« MSFL_FIND_CLOSEST_NEXT |
f an exact match is not found, find the next closest record.
+ MSFL_FIND_EXACT_MATCH
Find an exact date/time match.
« MSFL_FIND_USE_CURRENT_POS
Skip the find and use the current position. When this mode is used, the
contents of psLastRecDate are ignored.

Remarks

» Reads backward from the specified date/time for the specified number of price
records. If successful, the current data position is set to the previous record. Sincethis
function reads backward the data position is set to the previous record rather than the

next record.
See Also

« MSFL1_ReadDataRec (page 122)

e MSFL2_ReadDataRec (page 127)

e MSFL2_ReadMultipleRecs (page 128)

*« MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ ReadDataRec

C

int MSFL2_ReadDataRec(HSECURITY hSecurity,
const DateTime_struct *psRecordDate,
MSFLPriceRecord_struct *psPriceRec,
int iFindMode)

Visual Basic

MSFL2_ReadDataRec(ByVal hSecurity As Long,
psRecordDate As DateTime_struct,
psPriceRec As MSFLPriceRecord_struct,
ByVal iFindMode As Long) As Long

Delphi
MSFL2_ReadDataRec(hSecurity : HSECURITY;
const psRecordDate : DateTime_struct;
Var psPriceRec : MSFLPriceRecord_struct;
iFindMode : integer) : integer;
PowerBASIC
MSFL2_ReadDataRec(BYVAL hSecurity AS DWORD,

psRecordDate AS DateTime_struct,
psPriceRec AS MSFLPriceRecord_struct,
BYVAL iFindMode As Long) As Long

Locking

* Prevent Write Lock

Return Values

e MSFL_NO_ERR if successful
« MSFL_ERR_END_OF_FILE if the current data position is past the end of the file
* MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records

MetaStock®

MetaStock File Library (MSFL) « 127

Parameters

ID Description
hSecurity | dentifies the security.

psRecordDate | Pointsto a DateTime_struct structure (page 81) that contains the
date/time of the record to read.

psPriceRec Points to an MSFLPriceRecord_struct structure (page 84) that receives
the price record.

iFindMode Indicates what type of search to perform to locate the price record to read.
Following are the different modes available.
« MSFL_FIND CLOSEST PREV
If an exact match is not found, find the previous closest record.
« MSFL_FIND_CLOSEST_NEXT
If an exact match is not found, find the next closest record.
« MSFL_FIND_EXACT_MATCH
Find an exact date/time match.
e MSFL_FIND_USE_CURRENT_POS
Skip the find and use the current position. When this mode is used, the
contents of psRecordDate are ignored.

Remarks

» Reads aprice record for the specified date/time.
Thisfunction isequivaent to calling MSFL1 FindDataDate (page 92) to find the
date/time and then calling MSFL1_ReadDataRec (page 122) to read the price record.

See Also

* MSFL1_ReadDataRec (page 122)

« MSFL2_ReadBackMultipleRecs (page 126)

* MSFL2_ReadMultipleRecs (page 128)

¢ MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ReadMultipleRecs

C

int MSFL2_ReadMultipleRecs(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psFirstRecDate,
WORD *pwReadCount,
int iFindMode)

Visual Basic

MSFL2_ReadMultipleRecs(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psFirstRecDate As DateTime_struct,
pwReadCount As Integer,

ByVval iFirstFindMode As Long) As Long
Delphi

MSFL2_ReadMultipleRecs(hSecurity : HSECURITY;
Var pasPriceRec : MSFLPriceRecord_struct;
const psFirstRecDate : DateTime_struct;

Var pwReadCount : word;
iFindMode : iInteger) : integer;
PowerBASIC

MSFL2_ReadMultipleRecs(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psFirstRecDate AS DateTime_struct,
pwReadCount As Word,

BYVAL iFindMode As Long) As Long

Locking
* Prevent Write Lock

128 « MetaStock File Library (MSFL) MetaStock®

Return Values
e MSFL_MSG_LESS RECORDS READ if successful, but fewer records were read
than requested

e MSFL_NO_ERR if successful

e MSFL_ERR_INVALID_RECORDSIf theread count isinvalid

e MSFL_ERR_END_OF_FILE if the current data position is past the end of thefile
e MSFL_ERR_SECURITY_HAS NO_DATA if the security has no price records
Parameters

ID Description
hSecurity | dentifies the security.

pasPriceRec Points to an MSFLPriceRecord_struct structure (page 84) array that
receives the price records.

psFirstRecDate| Pointsto a DateTime_struct structure (page 81) that contains the
date/time of the record at which to start reading.

pwReadCount | Pointsto a WORD that contains the number of records to read. It also
receives the actual number of records read. The maximum records that
can be read per call islimited to

MSFL_MAX_READ WRITE_RECORDS.

iFindMode Indicates what type of search to perform to locate the first price record to
read. Following are the different modes available.
« MSFL_FIND_CLOSEST_PREV
If an exact match is not found, find the previous closest record.
¢ MSFL_FIND_CLOSEST NEXT
If an exact match is not found, find the next closest record.
« MSFL_FIND_EXACT_MATCH
Find an exact date/time match.
+ MSFL_FIND_USE_CURRENT_POS
Skip the find and use the current position. When this mode is used, the
contents of pskirstRecDate are ignored.

Remarks
» Reads the number of price recordsindicated. If successful, the current data positionis
set to the next price record.

See Also

* MSFL1 ReadDataRec (page 122)

« MSFL2_ReadBackMultipleRecs (page 126)

e MSFL2_ReadDataRec (page 127)

e MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ReadMultipleRecsByDates

C

int MSFL2_ReadMultipleRecsByDates(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psFirstRecDate,
const DateTime_struct *psLastRecDate,
WORD *pwMaxReadCount,
int iFirstFindMode)

Visual Basic

MSFL2_ReadMultipleRecsByDates(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psFirstRecDate As DateTime_struct,
psLastRecDate As DateTime_struct,
pwMaxReadCount As Integer,

ByVal iFirstFindMode As Long) As Long

MetaStock®

MetaStock File Library (MSFL) « 129

Delphi
MSFL2_ReadMultipleRecsByDates(hSecurity : HSECURITY;
Var pasPriceRec : MSFLPriceRecord_struct;
const psFirstRecDate : DateTime_struct;
const psLastRecDate : DateTime_struct;
Var pwMaxReadCount : word;
iFirstFindMode : integer) : integer;
PowerBASIC
MSFL2_ReadMultipleRecsByDates(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psFirstRecDate AS DateTime_struct,
psLastRecDate AS DateTime_struct,
pwMaxReadCount As Word,
BYVAL iFirstFindMode As Long) As Long
Locking
» Prevent Write Lock

Return Values
*« MSFL_MSG_LESS RECORDS READ if successful, but fewer records were read
than requested

e« MSFL_MSG_MORE_RECORDS IN_RANGE if successful, but there were more
records in the date range than the array could hold

e MSFL_NO_ERR if successful
« MSFL_ERR_INVALID_RECORDS:If theread count isinvalid

Parameters

ID Description

hSecurity Identifies the security.

pasPriceRec Points to an MSFLPriceRecord_struct structure (page 84) array

that receives the price records.

psFirstRecDate Points to a DateTime_struct structure (page 81) that contains the
date/time of the record at which to start reading.

psLastRecDate Pointsto a DateTime_struct structure (page 81) that contains the
date/time of the record at which to stop reading.
pwMaxReadCount | Points to a WORD that contains the maximum number of records to
read (i.e. the maximum number of recordsthe array can hold). It a'so
receives the actual number of records read.

iFirstFindMode Indicates what type of search to perform to locate the first price
record to read. Following are the different modes available.
« MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
« MSFL_FIND_CLOSEST_NEXT

If an exact match is not found, find the next closest record.
e« MSFL_FIND_EXACT_MATCH

Find an exact date/time match.

Remarks

» Readsthe price record(s) for the date range indicated. It stops reading when it reaches
aprice record with a date/time greater than psLastDate or when the maximum
number of records have been read. If successful, the current data position is set to the
next price record.

See Also

* MSFL1_ReadDataRec (page 122)

« MSFL2_ReadBackMultipleRecs (page 126)
e MSFL2_ReadDataRec (page 127)

e MSFL2_ReadMultipleRecs (page 128)

130 « MetaStock File Library (MSFL) MetaStock®

Messages and Errors

Note:

Error Codes

Thefollowing is alist of the possible error codes that can be returned from the M SFL
functions. On successful completion, MSFL_NO_ERR or an MSFL message code is
returned; in the event of an error, the specific MSFL error codeis returned.

The MSFL1_GetErrorMessage (page 102) function can be used to generate an error
message string. These are listed below.

-400: MSFL_ERR_NOT_INITIALIZED
Attempted to use an MSFL function without first initializing the MSFL.

-399: MSFL_ERR_ALREADY_INITIALIZED
Attempted to initialize the MSFL after it had already been initialized.

-398: MSFL_ERR_MSFL_CORRUPT
The MSFL or operating system is corrupt. The internal M SFL tables have been
damaged or operating system is now unstable. The MSFL must be shutdown.

-397: MSFL_ERR_OS_VER_NOT_SUPPORTED
The Windows version is below the minimum required (Windows 95 or
Windows NT 3.1).

-396: MSFL_ERR_SHARE_NOT_LOADED
File sharing is not loaded.

-395: MSFL_ERR_INSUFFICIENT_FILES
Attempted to initialize the MSFL with insufficient file handles.

-394: MSFL_ERR_INSUFFICIENT_MEM
Insufficient memory to perform requested function (i.e. the function called requires
more memory on the heap).

-393: MSFL_ERR_INVALID_USER_ID
The user name and/or application name areinvalid.

-392: MSFL_ERR_INVALID_TEMP_DIR
The Windows temp directory isinvalid.

-391: MSFL_ERR_DLL_INCOMPATIBLE
The MSFL DLL isincompatible with the application.

-375: MSFL_ERR_INVALID_DRIVE
Thedriveisinvalid.

-374: MSFL_ERR_INVALID_DIR
The directory isinvalid.

-373: MSFL_ERR_DIR_DOES_NOT_EXIST
Directory does not exist.

-372: MSFL_ERR_UNABLE_TO_CREATE_DIR
Unable to create the directory.

-371: MSFL_ERR_DIR_ALREADY_OPEN
Directory is aready open. Attempted to open an open directory.

-370: MSFL_ERR_DIR_NOT_OPEN
Attempted to call an MSFL function with a directory that is not open.

-369: MSFL_ERR_TOO_MANY_DIRS_OPEN
The maximum number of concurrent open directories has aready been reached;
opening another directory is not possible.

MetaStock®

MetaStock File Library (MSFL) « 131

-368: MSFL_ERR_ALREADY_A_MS_DIR
Attempted to build MetaStock filesin an existing MetaStock directory.

-367: MSFL_ERR_NOT_A_MS_DIR
The directory is not a MetaStock directory.

-366: MSFL_ERR_DIR_IS_BUSY
Thefiles are in a state where only one user can access them.

-365: MSFL_ERR_USER_ID_ALREADY_IN_DIR
Thisuser ID (i.e. program and user name) already has this directory open.

-364: MSFL_ERR_TOO_MANY_USERS_IN_DIR
The maximum number of users have already opened the directory.

-363: MSFL_ERR_INVALID_USER
The user isinvalid because another user with the same application name and user
name opened the directory.

-362: MSFL_ERR_NON_MSFL_USER_IN_DIR
The directory isin use by anon-MSFL application, the data cannot be accessed
until the single user application is finished.

-361: MSFL_ERR_DIR_IS_READ_ONLY
The directory isread-only; therefore, the operation cannot be performed.

-360: MSFL_ERR_MAX_FILES_IN_TEMP_DIR
Too many MSFL files exist in the Windows temp directory.

-355: MSFL_ERR_INVALID_XMASTER_FILE
The XMASTER fileis corrupt.

-354: MSFL_ERR_INVALID_INDEX_FILE
Theindex fileis corrupt.

-353: MSFL_ERR_INVALID_LOCK_FILE
Thelock fileis corrupt.

-352: MSFL_ERR_INVALID_SECURITY_FILE
The security fileis corrupt.

-351: MSFL_ERR_INVALID_USERS_FILE
The user fileis corrupt.

-350: MSFL_ERR_CRC_ERROR
A CRC error occurred while accessing afile.

-349: MSFL_ERR_DRIVE_NOT_READY
Thedriveisnot ready.

-348: MSFL_ERR_GENERAL_FAILURE
A genera failure occurred while accessing the disk.

-347: MSFL_ERR_MISC_DISK_ERROR
A general disk error occurred while accessing the disk.

-346: MSFL_ERR_SECTOR_NOT_FOUND
Sector not found.

-345: MSFL_ERR_SEEK_ERROR
An error occurred while seeking in the file.

-344: MSFL_ERR_UNKNOWN_MEDIA
Unknown disk media type.

-343: MSFL_ERR_WRITE_PROTECTED
The disk iswrite protected.

132 « MetaStock File Library (MSFL) MetaStock®

-342: MSFL_ERR_DISK_IS_FULL
The disk isfull, unable to write data.

-341: MSFL_ERR_NOT_SAME_DEVICE
The device (e.g. disk drive) has changed.

-340: MSFL_ERR_NETWORK_ERROR
A network error occurred while accessing files on the network.

-325: MSFL_ERR_LOCK_VIOLATION
Unableto unlock alocked region of afile.

-324: MSFL_ERR_INVALID_LOCK_TYPE
The lock typeis an unknown type.

-323: MSFL_ERR_FILE_LOCKED
Fileislocked by another user.

-322: MSFL_ERR_TOO_MANY_SEC_LOCKED
The maximum number of securities are already locked — the application cannot
lock additional securities.

-321: MSFL_ERR_SECURITY_LOCKED
Security islocked by another user.

-320: MSFL_ERR_SECURITY_NOT_LOCKED
The security is not locked, but must be to perform the operation.

-319: MSFL_ERR_IMPROPER_LOCK_TYPE
The lock type isincorrect for the operation requested.

-300: MSFL_ERR_END_OF FILE
End of thefile.

-299: MSFL_ERR_ERROR_OPENING_FILE
Unable to open thefile.

-298: MSFL_ERR_ERROR_READING_FILE
Error reading thefile.

-297: MSFL_ERR_ERROR_WRITING_FILE
Error writing to the file.

-296: MSFL_ERR_FILE_DOESNT_EXIST
File does not exist.

-295: MSFL_ERR_INVALID_FILE_HANDLE
Thefilehandleisinvalid.

-294: MSFL_ERR_PERMISSION_DENIED
Permission to access afile was denied.

-293: MSFL_ERR_SEEK_PAST_EOF
The seek went past the end of thefile.

-292: MSFL_ERR_MISC_FILE_ERROR
A miscellaneous file error occurred while accessing afile.

-275: MSFL_ERR_UNABLE_TO_READ_ALL
Unable to read all the records requested.

-274: MSFL_ERR_UNABLE_TO_WRITE_ALL
Unable to write all the records requested.

-250: MSFL_ERR_ALL_SYMB_NOT_LOADED

One or more of the symbolsin the directory wereinvalid; thus, al of the securities

in the directory were not |oaded.

MetaStock®

MetaStock File Library (MSFL) « 133

-249: MSFL_ERR_UNABLE_TO_RESYNCH
Unable to resynchronize the security files.

-248: MSFL_ERR_FILES_IN_DIR_CHANGED
Thefilesin the directory have changed (i.e. they are not the same files the directory
was opened with).

-247: MSFL_ERR_UNRECOGNIZED_VERSION
The MetaStock files are not a recognized version.

-225: MSFL_ERR_INVALID_COMP_SYMBOL
The composite symbol isinvalid.

-224: MSFL_ERR_INVALID_SYMBOL
Theticker symbol isinvalid.

-200: MSFL_ERR_DIFFERENT_DATA_FORMATS
The securities are of different dataformats (i.e. the periodicity, interval, or price
fields of the securities do not match).

-199: MSFL_ERR_DUPLICATE_SECURITIES
Attempted to open a directory that contains duplicate securities.

-198: MSFL_ERR_DUPLICATE_SECURITY
Adding the security would duplicate an existing security.

-197: MSFL_ERR_PRIMARY_SEC_NOT_FOUND
The primary security of the composite cannot be found.

-196: MSFL_ERR_SECONDARY_SEC_NOT_FOUND
The secondary security of the composite cannot be found.

-195: MSFL_ERR_SECURITY_HAS_ COMPOSITES
Security cannot be deleted because there are one or more composites that depend
on the security.

-194: MSFL_ERR_SECURITY_HAS _NO_DATA
Thereis no price data for the security.

-193: MSFL_ERR_SECURITY_IS_A_COMPOSITE
Security is acomposite.

-192: MSFL_ERR_SECURITY_NOT_COMPOSITE
Security is not a composite.

-191: MSFL_ERR_SECURITY_NOT_FOUND
The security was not found in the directory.

-190: MSFL_ERR_TOO_MANY_SECURITIES
The maximum number of securities per directory has already been reached; adding
additional securitiesis not possible.

-189: MSFL_ERR_TOO_MANY_COMPOSITES
The maximum number of composites per directory has already been reached.

-188: MSFL_ERR_SECURITIES_ARE_THE_SAME
The securities are the same security. Attempted to merge the security with itself.

-175: MSFL_ERR_INVALID_DATE
Thedateisinvalid.

-174: MSFL_ERR_INVALID_TIME
Thetimeisinvalid.

-173: MSFL_ERR_INVALID_INTERVAL
Theinterval isinvalid.

134 « MetaStock File Library (MSFL) MetaStock®

-172: MSFL_ERR_INVALID_PERIODICITY
The periodicity isinvalid.

-171: MSFL_ERR_INVALID_OPERATOR
The composite operator isinvalid.

-170: MSFL_ERR_INVALID_FIELD_ORDER
The data fields used are not in the same order as documented on page 80.

-169: MSFL_ERR_INVALID_RECORDS
The record numbers are not within avalid range for the operation.

-168: MSFL_ERR_INVALID_DISPLAY_UNITS
The display units are outside the valid range.

-167: MSFL_ERR_INVALID_SECURITY_HANDLE
The security handleis not valid.

-150: MSFL_ERR_ADDING_WOULD_OVERFLOW
Inserting or adding records would exceed the maximum number of records that can
be stored.

-149: MSFL_ERR_DATA_FILE_IS_FULL
The price datafileisfull.

-148: MSFL_ERR_DATA_RECORD_NOT_FOUND
A matching price record was not found for the date/time.

-147: MSFL_ERR_DATA_NOT_SORTED
The price datais not in date/time sort order.

-146: MSFL_ERR_DATE_AFTER_LAST_REC
The date/time requested is after the date/time of the last price record.

-145: MSFL_ERR_DATE_BEFORE_FIRST_REC
The date/time requested is before the date/time of the first price record.

-144: MSFL_ERR_RECORD _IS_A_DUPLICATE
The record duplicates an existing record.

-143: MSFL_ERR_RECORD_OUT_OF_RANGE
The record number is out of range.

-142: MSFL_ERR_RECORD_NOT_FOUND
The security record was not found —most likely an invalid security handle.

-125: MSFL_ERR_BUFFER_NOT_ATTACHED
A composite buffer was not attached to the locked composite.

-124: MSFL_ERR_INVALID_FUNC_PARMS
One or more of the function parameters areinvalid.

-123: MSFL_ERR_UNKNOWN_FIELDS REQ
The number of data fields used is below the minimum or above the maximum.

-100: MSFL_ERR_INVALID_FUNCTION_CALL
The MSFL DLL isnot initialized correctly to perform the request function call.
Refer to the “Initialization” section (page 87) for details on initidizing the
MSFL DLL.

0: MSFL_NO_ERR
Operation completed successfully.

MetaStock® MetaStock File Library (MSFL) « 135

Message Codes

Thefollowing islist of the possible message codes that can be returned from some
MSFL functions. The message codes are positive return codes; whereas the error codes
are negative return codes. Thus, if an MSFL function is successful the error will be
equal to or greater than MSFL_NO_ERR.

0:

25:

50:

51:

52:

53:

MSFL_NO_MSG
No message.

: MSFL_MSG_NOT_A_MetaStock_DIR

Not a MetaStock data directory.

: MSFL_MSG_CREATED_DIR

Created directory.

: MSFL_MSG_BUILT_MetaStock_DIR

Created empty MetaStock filesin the directory.

: MSFL_MSG_CREATED_N_BUILT_DIR

Created directory and empty MetaStock files.

: MSFL_MSG_FIRST_SECURITY_IN_DIR

Thisisthefirst security in the directory.

: MSFL_MSG_LAST_SECURITY_IN_DIR

Thisisthelast security in the directory.

MSFL_MSG_NOT_AN_EXACT_MATCH
The record found was not an exact match.

MSFL_MSG_OVERWROTE_RECORDS
Overwrote existing records.

MSFL_MSG_LESS_RECORDS _DEL
Fewer records were deleted than requested.

MSFL_MSG_LESS_RECORDS_READ
Fewer records were read than requested.

MSFL_MSG_MORE_RECORDS_IN_RANGE
There are more records within the specified date range.

136 « MetaStock File Library (MSFL) MetaStock®

Change Record

The following section lists (in reverse version order) a short description of all changes
made in earlier versions of the MSFL and the MSFL Developer’s Kit.

Changes in Version 9.0

The 9.0 version of the MSFL has only minor changes.

» The PowerBasic sample app for the MSFL and MSX uses the latest version
(i.e., version 7.03).

Changes in Version 8.0
» The maximum number of securities per directory
(i.e. MSFL_MAX_NUM_OF_SECURITIES) was increased from 2,000 to 6,000.

* A few minor problems were fixed.

Changes in Version 7.2
» The performance was increased for many operations.
 The following functions were added:
e MSFL1_FormatDate (page 94)
« MSFL1 FormatTime (page 95)
* MSFL1_GetDayMonthYear (page 98)
e MSFL1_GetHourMinTicks (page 104)
* MSFL1 MakeMSFLDate (page 117)
e MSFL1 MakeMSFLTime (page 118)
e MSFL1 ParseDateSring (page 120)
e MSFL1 ParseTimeSring (page 121)
» A PowerBASIC sample was added.
« A C console sample was added.
* Project/make files are provided for the Visual C++ 6.0, Borland C++ Builder 4, and
gcc 2.95.2 compilers.
» A few minor problems were fixed.

Changes in Version 7.0
« A Borland C++ Builder sample was added.

» A few minor problems were fixed.

Changes in Version 6.51

» Thealowed date range was expanded from the 1900’ s to include the 1800’ sand up to
31 December 2200. The new valid date rangeisfrom 1 January 1800 to 31 December
2200.

» Thetick count for all timeswas increased from two digits to three digits. See the
Formats section (page 79) for details on the new time format.

» The maximum number of price records per security
(i.,e. MSFL_MAX_DATA_RECORDS) was increased from 32,766 to 65,500.

» The maximum number of price records per read/write
(i.ee MSFL_MAX_READ_WRITE_RECORDS) was increased from 32,766 to
65,500.

* Anew flag (i.e. MSFL_DIR_ALLOW_MULTI_OPEN) was added to the
“MSFL1_OpenDirectory” function allowing afolder to be opened more than once.
See MSFL1 OpenDirectory (page 119) for details.

» TheVisua Basic types and Delphi records were changed to match the documentation
aswell as the C/C++ structures.

MetaStock® MetaStock File Library (MSFL) « 137

Changes in Version 6.5

The maximum number of securities per directory
(i.e. MSFL_MAX_NUM_OF SECURITIES) was increased from 255 to 2,000.

The maximum length of a security name (i.e. MSFL_MAX_NAME_LENGTH) was
increased from 16 to 45 characters.

The maximum number of price records per read/write
(i.e. MSFL_MAX_READ_WRITE_RECORDS) was increased from 1,927
to 32,766.

Universal naming convention (UNC) and long file names support was added.

Thelibrary was converted from aC library to a32-bit DLL to allow accessviaVisual
Basic, Delphi, and other devel opment environments.

Security handles replaced data requests and extended symbols.
String error messages were added.
Structure types where changed for 32-bit.
A total size member was added to many of the structures.
The following functions were added:
e MSFL1_GetDirNumber FromHandle (page 100)
* MSFL1_GetErrorMessage (page 102)
e MSFL1_GetSecurityHandle (page 111)
* MSFL1_GetSecuritylD (page 112)
e MSFL2_GetSecurityHandles (page 125)

138 « MetaStock File Library (MSFL) MetaStock®

MSFL Index

A

Application development
C/IC++ 75
Delphi 76
PowerBASIC 76
Visual Basic 76

C

CD-ROM support 79
Composite 78
primary security 78
record numbers 78
secondary security 78

D

datafield mnemonics 80, 84
Data Types

in MSFL 81
Date Time structure 81
Dates 79
Directory

closing 87

number 87

opening 87
DOP files 79
Duplicate

securities 120
duplicate securities 88

E

Error

codes 88, 131
handling 88

F

Field combinations 80
File
reserved names 79

types 79
function levelsin MSFL 77

Functions

MSFL1 CloseDirectory 92
MSFL1 FindDataDate 92
MSFL1_FindDataRec 93

MSFL1 FormatDate 94

MSFL1 FormatTime 95
MSFL1_GetCurrentDataPos 96
MSFL1_GetDataPath 97

MSFL1 GetDataRecordCount 97
MSFL1 GetDayMonthY ear 98

MSFL1_GetDirectoryNumber 99
MSFL1_GetDirectoryStatus 100

MSFL1 GetDirNumberFromHandle 100
MSFL1 GetErrorMessage 102

MSFL1 GetFirstSecuritylnfo 103
MSFL1 GetHourMinTicks 104
MSFL1_Getl astFailedLocklnfo 87, 105
MSFL1_Getl astFailedOpenDirlnfo 106
MSFL1_GetL astSecuritylnfo 106
MSFL1_GetM SFL State 107

MSFL1 GetNextSecuritylnfo 108
MSFL1 GetPrevSecuritylnfo 109
MSFL1_GetRecordCountForDateRange 110
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecuritylD 112

MSFL1 GetSecuritylnfo 113

MSFL1 GetSecurityl ockedStatus 114
MSFL1 Initialize 115

MSFL1 | ockSecurity 116

MSFL1 MakeMSFLDate 117
MSFL1_MakeMSFLTime 118

MSFL1 OpenDirectory 119

MSFL1 ParseDateString 120

MSFL1_ ParseTimeString 121

MSFL1 ReadDataRec 122

MSFL1 SeekBeginData 123
MSFL1_SeekEndData 123
MSFL1_Shutdown 87, 124

MSFL1 UnlockSecurity 124
MSFL2_GetSecurityHandles 125
MSFL2_ReadBackMuultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

H
HSECURITY 81, 112

Initialize 87, 116
key 87

L

Library key 87

Lock types 87
full 78, 87
prevent write 78, 87
write 78, 87

Locking
composite 87
directory 78
security 78, 87

[Time 81

MetaStock®

MetaStock File Library (MSFL) « 139

M

M essage codes 88, 136
MSFL datatypes 81
MSFL function levels 77
MSFL functions

listed by name 89
listed by type 90
MSFL notations 81

MSFL_DISPLAY_UNITS DECIMAL 83
MSFL_DLL_INTERFACE_VERSION 116
MSFL_ERR_MSFL_CORRUPT 88
MSFL_ERR NON_MSFL_USER IN_DIR 106
MSFL_LOCK_FULL_LOCK 87
MSFL_LOCK_PREV_WRITE_LOCK 87
MSFL_LOCK_WRITE_LOCK 87
MSFL_MAX_APP_NAME_LENGTH 116
MSFL_MAX_DISPLAY_UNITS 83
MSFL_MAX_INTERVAL 83
MSFL_MAX_NAME_LENGTH 83
MSFL_MAX_READ_WRITE_RECORDS 129
MSFL_MAX_SYMBOL_LENGTH 80, 83
MSFL_MAX_USER_NAME_LENGTH 116
MSFL_MIN_DISPLAY_UNITS 83
MSFL_MIN_INTERVAL 83
MSFL_MSG_NOT_A_METASTOCK_DIR 120
MSFL_NO_ERR 88
MSFL_VALID_OPERATORS 83
MSFL_VALID_PERIODICITIES 83
MSFL1_GetErrorMessage 102
MSFL1 Initialize, described 115
MSFLDirectoryStatus struct 101

defined 101
M SFL Securityldentifier_struct 112

defined 112
Multi-user 78

N
notations used by the MSFL 81

P

Price data 80

field combinations 80
mnemonics 80
Price record structure 84

Primary security 78
psLastDate 130

R
Removable media 77

Return codes. See Error codes.

S

Secondary security 78
Securities
composite 78
duplicate 88, 120
Security handle 81

Security identifier structure 112
Security information structure 82
Shutdown 87, 124

Structures

date time 81

price record 84

security information 82
Symbol 80

T

Technical support 77
Times 79

Vv

variable notation 81

W
wDataAvailable 80, 84, 85

140 « MetaStock File Library (MSFL)

MetaStock®

Index

Symbols
~MSXIMPORTDLLS~ 16

A

Advise Cdlbacks, DDE 19
Advise Requests, DDE 19

Application development
C/C++ 75
Delphi 76
PowerBASIC 76
samples 3
Visual Basic 76

Application, DDE 17, 18
Argument range tests 53
Ask, DDE Item 18
Asksize, DDE Item 18

B

Bid, DDE Item 18
Bidsize, DDE Item 18

Borland C++ 5.0

Creatingan MSX DLL 43
Debugging an MSX DLL 46

Borland C++ Builder 4.0

Creatingan MSX DLL 41
Debugging an MSX DLL 46

Borland Delphi Pascal

Creatingan MSX DLL 43
Debugging an MSX DLL 46

C
C

Creating an MSX DLL 40, 41, 43
Debugging an MSX DLL 45, 46

Sample DLL Program 63
Calculation Functions 30
Cadlculation Structures 35

M SXDatalnfoRec 35

MSXDataRec 36
MSXDateTime 35

CD-ROM support 79
CF_TEXT 18, 20
Change, DDE Item 18

closing EqDdeSrv with active conversations 19

Cold-link 17, 19
Command line switches in EqCustUI 12
compatibility of Formula Organizer 14
compilers supported 2
Composite 78

primary security 78

record numbers 78

secondary security 78

Connections, DDE 19

Copyright information 13, 15

custom strings, and partial matches 34
Custom toolbar 5

D

Data

Data Array 56
Price Data 58
Sample 48
Types 31

data array

Argument range 53
tests

Max/Min 52

Special Case 52
data field mnemonics 80, 84
Data Requests, DDE 19
Data Server 17

Data Types 31
Dates 31
in MSFL 81
Strings 31
Times 31

Date Time structure 81
Date, DDE Item 18

Dates 79

DDE Advise Callbacks 19
DDE Advise Requests 19
DDE Application 17, 18
DDE Connections 19
DDE Data Requests 19

DDE Item 17
Ask 18
Asksize 18
Bid 18
Bidsize 18

MetaStock®

Index « 141

Change 18
Date 18
High 18
Last 18

Low 18
Open 18
Openint 18
Prevclose 18
Time 18
Totalvol 18
Tradevol 18
Y dtotalvol 18

DDE Server 17
DDE Service 17
DDE System Requests 19
DDE System Topic 19, 20
Formats 20
Status 20

Sysltems 20
TopicltemList 20

DDE Topic 17, 18
Directory
closing 87
number 87
opening 87
distributing your MSX DLL 60
DOP files 79
Duplicate
securities 120
duplicate securities 88

E

EqCustUl 5
C/C++ example 6
locking MetaStock files 5

EqCustUl utility 5
EgDatSrv 17
EgDatSrv Updates 19
EgDatSrv.exe 17

EgDdeSrv, closing with active conversations 19

EgDdeSrv.exe 17
Equis Data Server 17

Equis Dynamic Data Exchange Server 17

Error
codes 88, 131
codesin EqCustUl 12
handling 88
Excel 17
DDE Example for 20
Export
DLLs 13
formula-based tools 13
templates 13

External Function DLL folder 16
ExtFml 26, 32, 34

F

Field combinations 80
File
reserved names 79
types 79

Folder

~MSXIMPORTDLLS~ 16
External Function DLLs 16

Formats, DDE System Topic 20
Formorg.exe, detecting multiple versions 16
Formula organizer 13

exporting 14
Formula Organizer compatibility 14
FOSetup.exe 15, 16

Function Argument Structures 38
MSX CustomArgsArray 39
MSXDatalnfoRecArgsArray 38
MSXNumericArgsArray 39
M SXResultRec 39
MSXStringArgsArray 39

function levelsin MSFL 77

Functions

MSFL1_CloseDirectory 92

MSFL1 FindDataDate 92

MSFL1 FindDataRec 93

MSFL1 FormatDate 94

MSFL1 FormatTime 95
MSFL1_GetCurrentDataPos 96

MSFL1 GetDataPath 97

MSFL1 GetDataRecordCount 97

MSFL1 GetDayMonthY ear 98

MSFL1 GetDirectoryNumber 99

MSFL1 GetDirectoryStatus 100
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetErrorMessage 102
MSFL1_GetFirstSecuritylnfo 103
MSFL1 GetHourMinTicks 104

MSFL1 Getl astFailedLockinfo 87, 105
MSFL1 GetlL astFailedOpenDirlnfo 106
MSFL1 Getl astSecuritylnfo 106

MSFL1 GetMSFL State 107
MSFL1_GetNextSecuritylnfo 108
MSFL1 GetPrevSecuritylnfo 109
MSFL1 GetRecordCountForDateRange 110
MSFL1 GetSecurityCount 111

MSFL1 GetSecurityHandle 111

MSFL1 GetSecuritylD 112
MSFL1_GetSecuritylnfo 113

MSFL1 GetSecuritylL ockedStatus 114
MSFL1 Initialize 115

MSFL1 L ockSecurity 116

MSFL1 MakeMSFLDate 117

MSFL1 MakeMSFLTime 118

142 « Index

MetaStock®

MSFL1 OpenDirectory 119
MSFL1 ParseDateString 120
MSFL1 ParseTimeString 121

MSFL1 ReadDataRec 122
MSFL1 SeekBeginData 123
MSFL1 SeekEndData 123
MSFL1 Shutdown 87, 124
MSFL1 UnlockSecurity 124

MSFL2_GetSecurityHandles 125
MSFL2_ReadBackMultipleRecs 126

MSFL2_ReadDataRec 127

MSFL2_ ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

H

Help 26

Help menu in MetaStock 5
High, DDE Item 18
Hot-link 17, 19
HSECURITY 81, 112

iFirstValid 30, 35
defined 35
iFirstValid setting 58
iLastValid 30, 35
defined 35
iLastValid setting 58
iLastValue indexes 30

Import
DLLs 13
formula-based tools 13
templates 13
Initialization Functions 27
MSXInfo 27
MSXNthArg 28
M SXNthCustomString 29
M SXNthFunction 28
Initialization Structures 32
MSXDLLDef 32
MSXFuncArgDef 33
M SXFuncCustomString 34
MSXFuncDef 32
Initialize 87, 116
key 87
initialize 22
Installation
files3
setup 2
Installation file
creating 13, 15
installing 16
password 16
using 16

Instaling third party add-ons 13
Item, DDE 17

L

Last, DDE Item 18
Library key 87
Lock types 87

full 78, 87
prevent write 78, 87
write 78, 87
locked MetaStock files 5
Locking
composite 87
directory 78
security 78, 87
Low, DDE Item 18
ITime 35, 81

M

Max/Min data array tests 52
Menu.Additem 8
Menu.AddPopupltem 10
Menu.Deleteltem 9
Menu.DeletePopupltem 11
Message codes 88, 136

MetaStock

Custom toolbar 5
Help menu 5
loading DLLs 16
Toolsmenu 5

MetaStock External Function (MSX) defined 25
MetaStock files
locked 5
Microsoft Excel 17
DDE Example 20
Microsoft Visual C++

Creating an MSX DLL 40
Debugging an MSX DLL 45

MSFL datatypes 81
MSFL function levels 77

MSFL functions
listed by name 89

listed by type 90
MSFL notations 81
MSFL, usinginan MSX DLL 60
MSFL_DISPLAY_UNITS DECIMAL 83
MSFL _DLL_INTERFACE VERSION 116
MSFL_ERR MSFL_ CORRUPT 88
MSFL_ERR NON_MSFL_USER IN_DIR 106
MSFL LOCK_ FULL LOCK 87

MetaStock®

Index « 143

MSFL_LOCK_PREV_WRITE_LOCK 87
MSFL_LOCK_WRITE_LOCK 87
MSFL_MAX_APP_NAME_LENGTH 116
MSFL_MAX_DISPLAY_UNITS 83
MSFL_MAX_INTERVAL 83
MSFL_MAX_NAME_LENGTH 83

MSFL_MAX_READ_WRITE_RECORDS 129

MSFL_MAX_SYMBOL_LENGTH 80, 83

MSFL_MAX_USER NAME_LENGTH 116

MSFL_MIN_DISPLAY_UNITS 83
MSFL_MIN_INTERVAL 83

MSFL_MSG_NOT_A_METASTOCK_DIR 120

MSFL_NO_ERR 88
MSFL_VALID_OPERATORS 83
MSFL_VALID_PERIODICITIES 83
MSFL1 GetErrorMessage 102
MSFL1 Initialize, described 115
MSFL DirectoryStatus_struct 101
defined 101
M SFL Securityldentifier_struct 112
defined 112
MSX DLL, distributing 60
MSX_ERROR 39
MSX_MAXARGS 33, 38
MSX_MAXSTRING 32
MSX_MAXSTRING, defined 31
MSX_VERSION 32
MSX Custom 34
M SX CustomArgsArray structure 39
M SX Datal nfoRec 36
M SX Datal nfoRec structure 35
M SX Datal nfoRecArgsArray structure 38
MSXDataRec 35
M SXDataRec structure 58
described 36
MSXDateTime 35, 36
MSXDLLDef structure 27
MSXFuncArgDef data structure 29
M SX FuncCustomString data structure 29
MSXFuncDef data structure 28
MSXNthCustomString 34
M SXNumeric arguments 38
MSXNumericArgsArray argument array 38
MSXNumericArgsArray structure 39
M SX ResultRec structure 39
M SX StringArgsArray structure 39
MSX Struc.bas 32

MSX Struc.pas 32
Multi-user 78

N
notations used by the MSFL 81

O

Open, DDE Item 18
Openint, DDE Item 18

P

partia match on custom strings 34

Password
formulas 15
installation file 16

PowerBASIC

Creatingan MSX DLL 44
Debugging an MSX DLL 47
Sample DLL Program 71

Prevclose, DDE Item 18

Price data 80
field combinations 80
mnemonics 80

Price record structure 84
Primary security 78
Programming Considerations

Ul Restrictions 59
psLastDate 130

R

Registry 18

Removable media 77

Return codes. See Error codes.

S

Sample
applications 3
data 3

sClose data array 58
Secondary security 78
Securities
composite 78
duplicate 88, 120

Security handle 81

Security identifier structure 112
Security information structure 82
Service, DDE 17
Setup key 2

144 « Index

MetaStock®

Shutdown 87, 124

sInd structure 36

Snapshot 17

Special Case data array tests 52
Status, DDE System Topic 20
string format in DDE Server 18
strings, and partial matches 34

Structures

date time 81
price record 84
security information 82

supported compilers 2

Symbol 80

Sysltems, DDE System Topic 20
System Requests, DDE 19
System Requirements 2

System Topic, DDE 19, 20

T

Tech Notes
Using MSFL inan MSX DLL 60
Technical support 4, 26, 77

Templates
exporting 13
importing 13
Testing
MSXTest 48
Stress Testing 52
Testing your DLL with MetaStock 55

Time, DDE Item 18

Times 79

Toolbar.Add 7

Toolbar.Delete 8

Tools menu in MetaStock 5

Topic, DDE 17, 18

TopicltemList, DDE System Topic 20
Totalvol, DDE Item 18

Tradevol, DDE Item 18

typographic conventions 2

U

User interface 5

Vv

Variable Notation 31
variable notation 81
Visua Basic 25

wW

wDataAvailable 80, 84, 85
Win32 43
Win32 DLL 25

Y
Y dtotalvol, DDE Item 18

MetaStock®

Index « 145

	Introduction
	Overview
	Typography Conventions
	System Requirements
	Setup
	Supported Compilers
	Installed Files
	Getting Help

	Modifying the MetaStock User Interface
	Introduction
	Using the EqCustUI
	Commands
	Command Line Switches
	Errors

	Formula Organizer Enhancements
	Introduction
	Using the Formula Organizer to Export
	Using the Self-extracting Installation File

	DDE Data Interface
	Overview
	Background
	Implementation

	Interface
	Running EqDdeSrv.exe
	System Topic

	Examples
	Microsoft Excel Example.
	Simple C Example

	Suggested Resources

	MetaStock External Functions (MSX)
	Introduction
	MSX DLL Capabilities
	Getting Assistance

	Overview
	Function Prototype Section
	Initialization Functions
	Calculation Functions

	Data Types
	Formats
	Variable Notation
	Initialization Structures

	Calculation Structures
	Function Argument structures
	Examples

	Creating an MSX DLL
	Microsoft Visual C++ 4.x, 5.0, and 6.0
	Borland C++ Builder 4.0
	Borland C++ 5.0
	Borland Delphi 3.0, 4.0, and 5.0
	PowerBASIC/DLL 6.0
	Naming your DLL and Calculation Functions

	Debugging Your MSX DLL
	General Approach
	Microsoft Visual C++ 4.x, 5.0, and 6.0
	Borland C++ Builder 4.0
	Borland C++ 5.0
	Borland Delphi 3.0, 4.0, and 5.0
	PowerBASIC/DLL 6.0

	Testing Your DLL With MSXTest
	Stress Testing Your DLL Functions
	Automating MSXTest From Your IDE

	Testing Your DLL With MetaStock
	Programming Guidelines
	Data Storage and Calculations
	Things to Remember
	User Interface Restrictions

	Tech Note 1 - Using MSFL in an MSX DLL
	MSX Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	P
	S
	T
	V
	W

	Sample DLL Programs
	“C” Example
	Delphi Pascal Example
	PowerBASIC/DLL Example
	References

	MetaStock File Library (MSFL)
	Introduction
	What’s New

	Application Integration
	Visual Basic
	Delphi
	PowerBASIC

	Getting Help
	Overview
	Securities
	Price Data
	Composites
	Multi-user Support
	Reserved File Names
	CD-ROM Support

	Data Types
	Formats
	Types
	Variable Notation
	Structures

	Using the Library
	Outline
	Initialization
	Directory Opening
	Security Locking
	Data Assumptions and Requirements
	Error Handling

	Functions
	Return Values
	Listed By Name
	Listed By Type
	Reference

	Messages and Errors
	Error Codes
	Message Codes

	Change Record
	MSFL Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

