
MetaStock®

 Developer’s Kit

For MetaStock Solution Providers

Version 9.1

Printed in the USA

All Rights Reserved
Copyright © 1985-2005

Equis International
90 South 400 West

Suite 620
Salt Lake City, UT USA

84101

http://www.equis.com

http://www.equis.com

The MetaStock Developer’s Kit (“Software”) and accompanying documentation (“MetaStock Developer’s Kit

User's Manual”) are licensed, not sold, to you. By opening the sealed package and/or using the Software, you

indicate your acceptance of the Equis Software License Agreement that is included with the original package.

The DownLoader and Smart Charts are trademarks of Equis International. Equis and MetaStock are

registered trademarks of Equis International. Microsoft, MS-DOS, Windows, Windows NT, Win32, Visual

C++, Developer Studio, and Visual Basic are trademarks of Microsoft Corporation. Borland is a registered

trademark of Inprise Corporation. Delphi is a trademark of Inprise Corporation. PowerBASIC is a registered

trademark of PowerBASIC, Inc.

Except as permitted by law, no part of this document may be reproduced or transmitted by any process or

means without the prior written consent of Equis International (Equis). Equis, by publishing this document,

does not guarantee that any information contained herein is and will remain accurate or that use of the

information will ensure correct and faultless operation of the relevant product or service. Equis provides its

products and services as tools to be used by investors who are aware of the risk inherent in securities trading,

not as recommendations to buy or sell. Equis, its agents, affiliates, and employees shall not be held liable to

or through any user for any loss or damage whatsoever resulting from reliance on the information contained

within this document or through the use of Equis products or services.

9/23/05

9 8 7 6 5 4 3 2 1 IP

MetaStock® Table of Contents • i

Table of Contents

Introduction 1
Overview .1
Typography Conventions .2
System Requirements .2
Setup .2
Supported Compilers .2
Installed Files .3
Getting Help .4

Modifying the MetaStock User Interface 5
Introduction .5
Using the EqCustUI .5
Commands .7
Command Line Switches .12
Errors .12

Formula Organizer Enhancements 13
Introduction .13
Using the Formula Organizer to Export .14
Using the Self-extracting Installation File .16

DDE Data Interface 17
Overview .17

Background .17
Implementation .17

Interface .18
Running EqDdeSrv.exe .18
System Topic .20

Examples .20
Microsoft Excel Example. .20
Simple C Example .22

Suggested Resources .24

MetaStock External Functions (MSX) 25
Introduction .25

MSX DLL Capabilities .25
Getting Assistance .26

Overview . 26
Function Prototype Section .27

Initialization Functions .27
Calculation Functions .30

Data Types .31
Formats .31

ii • Table of Contents MetaStock®

Variable Notation . 31
Initialization Structures . 32

Calculation Structures . 35
Function Argument structures . 38

Examples . 39
Creating an MSX DLL . 40

Microsoft Visual C++ 4.x, 5.0, and 6.0 . 40
Borland C++ Builder 4.0 . 41
Borland C++ 5.0 . 43
Borland Delphi 3.0, 4.0, and 5.0 . 43
PowerBASIC/DLL 6.0 . 44
Naming your DLL and Calculation Functions . 44

Debugging Your MSX DLL . 45
General Approach . 45
Microsoft Visual C++ 4.x, 5.0, and 6.0 . 45
Borland C++ Builder 4.0 . 46
Borland C++ 5.0 . 46
Borland Delphi 3.0, 4.0, and 5.0 . 46
PowerBASIC/DLL 6.0 . 47

Testing Your DLL With MSXTest . 48
Stress Testing Your DLL Functions . 52
Automating MSXTest From Your IDE . 54

Testing Your DLL With MetaStock . 55
Programming Guidelines . 56

Data Storage and Calculations . 56
Things to Remember . 59
User Interface Restrictions . 59

Tech Note 1 – Using MSFL in an MSX DLL . 60
MSX Index . 61

Sample DLL Programs 63
“C” Example . 63
Delphi Pascal Example . 67
PowerBASIC/DLL Example . 71
References . 74

MetaStock File Library (MSFL) 75
Introduction . 75

What’s New . 75
Application Integration . 75

Visual Basic . 76
Delphi . 76
PowerBASIC . 76

Getting Help . 77
Overview . 77

Securities . 77
Price Data . 77
Composites . 78
Multi-user Support . 78
Reserved File Names . 79

MetaStock® Table of Contents • iii

CD-ROM Support .79
Data Types .79

Formats .79
Types .81
Variable Notation .81
Structures .81

Using the Library .86
Outline .86
Initialization .87
Directory Opening .87
Security Locking .87
Data Assumptions and Requirements .88
Error Handling .88

Functions .88
Return Values .88
Listed By Name .89
Listed By Type .90
Reference .91

Messages and Errors .131
Error Codes .131
Message Codes .136

Change Record .137
MSFL Index .139

Index 141

iv • Table of Contents MetaStock®

MetaStock® Introduction • 1

Introduction

Overview
The MetaStock® Developer’s Kit includes applications and documentation for tools
used to customize MetaStock and access MetaStock data.

The Equis® Custom User Interface Utility allows developers to add their own
commands to the MetaStock Custom Toolbar, Tools menu and Help menu.
The MetaStock Formula Organizer Enhancements are installed with this toolkit.
Documentation for these enhancements is included in this manual.
The DDE Server is provided with MetaStock Professional (versions 7.0 and later), and
MetaStock FX. Full documentation for this feature is included in this manual.
The MetaStock External Function (MSX) Application Programming Interface
(API) allows software developers to dynamically add externally defined functions to
the MetaStock Formula Language. These functions can be called from Custom
Indicators, Explorations, System Tests, and Experts. This feature is available in
MetaStock, MetaStock Professional (versions 7.0 and later), as well as MetaStock FX.
The MetaStock File Library (MSFL) Application Programming Interface (API)
provides developers with the tools necessary to integrate applications with the
MetaStock data format.
This manual contains the instructions necessary to implement each of these
applications. It assumes that the developer is an experienced programmer familiar with
security price data and with creating and calling dynamic link libraries.

2 • Introduction MetaStock®

Typography Conventions
The following typographic conventions are used throughout this manual:

System Requirements
• Windows NT 4.0 (Service Pack 6a or higher)/

Windows 2000 (Service Pack 1 or higher)/
Windows XP

• 166 MHz Pentium CPU
• 32 MB of RAM
• 50 MB of free hard disk space

Setup
1. Insert the Program CD into your drive. The setup program should start automatically.

If the auto-run feature of Windows isn't enabled on your system,
a. Click Start and choose Run.
b. Type “D:\SETUP.EXE” in the Open box and click OK.

(“D” represents the letter assigned to your CD-ROM drive. If your drive is
assigned a different letter, use it instead of “D”.)

2. Follow the on-screen instructions. You will be prompted to enter a Setup Key.
Your Setup Key is found on the back of the CD case.

Supported Compilers
The MetaStock Developer’s Kit supports the following compilers:
• Borland® C++ Builder (Versions 5.0 and above)
• Borland® Delphi™ (Versions 3, 4 and 5)
• GCC 2.9.5.2
• Microsoft Visual C++™ (Versions 4.0 and above)
• Microsoft Visual Basic™ 6.0
• PowerBASIC®/DLL Version 6

Typeface Significance
Monospaced type Program code.
Italic Monospace Filenames
Sans Serif Text in the program interface

(Bold indicates buttons)
ALL CAPS Mnemonics such as error codes, messages and defined values.
Italics Function names, variable names, structure names or identifiers.

(This type is also used to emphasize certain words.)

MetaStock® Introduction • 3

Installed Files
After installing, the following directories and files should exist in the installation
directory. Below is a short description of each file and directory.

Directory/File Description
UI Contains eqcustui.exe (the Equis Custom User Interface application) and

ReadMe.Doc which contains information provided since the printing of this manual.
MSFL\DATA This directory contains sample MetaStock price data.
MSFL\DLL

msfl91.dll The release version of the MSFL DLL.
msfl91d.dll The debug version of the MSFL DLL.

MSFL\DEF

msfl.def The module definition file for the MSFL DLLs
MSFL\INCLUDE

msfl.h The C header file containing the MSFL defines, structures and function prototypes.
msflutil.h The prototypes for a small collection of helpful C++ functions.
msflutil.cpp A small collection of helpful C++ functions.
msfl.bas The Microsoft Visual Basic module containing the MSFL function and type declares.
msflutil.bas A Microsoft Visual Basic module containing helpful routines.
msfl.pas The Delphi unit containing the MSFL constants, records and function declarations.
msfl.inc The PowerBASIC module containing the MSFL function and type declares.

MSFL\LIB\BC

msfl91.lib The release link library for Borland C++ Builder 4 compiler.
msfl91d.lib The debug link library for Borland C++ Builder 4 compiler.

MSFL\LIB\GCC

msfl91.lib The release link library for the gcc 2.9.5.2 compiler.
msfl91d.lib The debug link library for the gcc 2.9.5.2 compiler.

MSFL\LIB\VC

msfl91.lib The release link library for Microsoft Visual C++ 6.0 compiler.
msfl91d.lib The debug link library for Microsoft Visual C++ 6.0 compiler.

MSFL\SAMPLES\BC The sample application for Borland C++ Builder 4 compiler.
MSFL\SAMPLES\C-CONSOLE A C/C++ sample console application for the Borland C++ Builder 4, gcc 2.9.5.2, and

Microsoft Visual C++ 6.0 compilers.
MSFL\SAMPLES\DELPHI The sample application for Borland Delphi 4.
MSFL\SAMPLES\PB The sample application for PowerBASIC/DLL 6.0.
MSFL\SAMPLES\VB The sample application for Microsoft Visual Basic 6.0.
MSFL\SAMPLES\VC The sample application for the Microsoft Visual C++ 6.0 compiler.
MSX Contains MSXTest.exe, sample DLLs, sample data, and ReadMe.Doc containing

additional information provided since the printing of this manual.
MSX\C Samples and templates for Microsoft Visual C++ (Versions 4.0 and above), and

Borland C++ (Versions 5.0 and above).
MSX\DELPHI Samples and templates for Borland Delphi Versions 3, 4 and 5.
MSX\PBasic Samples and templates for PowerBASIC/DLL Version 6.

4 • Introduction MetaStock®

Getting Help
Due to the complexity of the programming languages and development environments,
Equis International is only able to provide minimal technical support for the MetaStock
Developer’s Kit. We will help you in understanding how to use the MetaStock
Developer’s Kit, but we cannot aid in writing or debugging your application or DLL.
This manual explains the use of the MetaStock Developer’s Kit, but not the programming
techniques required to effectively use it. The sample applications can be a good source of
information as well as an excellent starting point.

CAUTION: Failure to follow the programming guidelines may result in the corruption of other
MetaStock variables and/or loss of the user’s data. Equis International shall not be
responsible for any damages of any type caused by the MetaStock Developer’s Kit.
Equis International is committed to enhancing the MetaStock Developer’s Kit. If you
are having a problem directly related to the Developer’s Kit, you may contact Equis by
mail or by the Internet.

By Mail
Equis International
MS Dev Kit Support
90 South 400 West, Suite 620
Salt Lake City, UT 84101

By Internet
msdevkit@equis.com
When contacting Equis by Internet, please include the module you are working with in
the subject line of your e-mail message (For example, MSX, MSFL, etc.).

MetaStock® Modifying the MetaStock User Interface • 5

Modifying the MetaStock User Interface

Introduction
EqCustUI is a utility that can be used to customize the user interface in MetaStock.
Specifically, it can be used to add and delete buttons on the MetaStock Custom toolbar.
It can also be used to add and delete menu items in the reserved section of either the
MetaStock Tools menu or the MetaStock Help menu.

Restrictions
Please note that the utility cannot be used to modify any other MetaStock toolbar or
menu other than those listed above. It should also be noted that MetaStock must be
installed on the user's machine before using the EqCustUI utility. If this is not done
then the utility will not be able to locate the files to modify.

Using the EqCustUI
EqCustUI uses the command line for all input. Other than error messages, there is no
user interface associated with this utility. This makes the utility useful for those third-
party developers that use DOS batch files to install their MetaStock add-on products.
For those third-party developers that use an installation program, please use the
Windows API function CreateProcess to launch the EqCustUI utility.

IMPORTANT: EqCustUI locks the MetaStock files that it modifies while it is modifying them.
For this reason, you must wait for the utility to finish its processing and exit before
creating another instance. Failure to do so will produce undesirable results, as the
second instance of EqCustUI will not be able to access the files it needs.

6 • Modifying the MetaStock User Interface MetaStock®

The following is a C/C++ example of how to use the CreateProcess function to
modify the MetaStock user interface.

BOOL bProcessCreated;
STARTUPINFO si;
PROCESS_INFORMATION pi;

si.cb = sizeof (si);
si.lpReserved = NULL;
si.lpTitle = NULL;
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
si.cbReserved2 = 0;
si.lpReserved2 = NULL;

// Spawn EqCustUI to modify the MetaStock user interface
bProcessCreated = CreateProcess (

_T("c:\\source\\equis apps\\eqcustui\\debug\\eqcustui.exe"),
_T("EqCustUI.exe \"Toolbar.Add(www.equis.com, Equis on the
web)\""),
NULL,
NULL,
FALSE,
NORMAL_PRIORITY_CLASS,
NULL,
NULL,
&si,
&pi);

// Wait for EqCustUI to finish
if (bProcessCreated)
WaitForSingleObject (pi.hProcess, 5000);

Note: The command line must be enclosed in quotes (" ") if spaces are used. While this is
optional if there are no spaces in the command line, it is recommended that the command
line always be enclosed in quotes to avoid problems in the future.

The MetaStock user interface is modified by specifying an object.command pair on the
utility's command line. The keywords Toolbar and Menu are the only objects accepted
by the EqCustUI utility. The Toolbar object accepts the commands Add and Delete.
The Menu object accepts the commands AddItem, DeleteItem, AddPopupItem, and
DeletePopupItem. Objects and commands must be separated by a period. For example,
Toolbar.AddItem is valid whereas ToolbarAddItem is not. The EqCustUI utility does
not allow the third-party developer to specify or change the order of buttons and menu
items.

IMPORTANT: The EqCustUI utility is not copied to the end user's computer when they install
MetaStock. For this reason the EqCustUI utility must be included with each third-party
solution that modifies the MetaStock user interface. Failure to do so will cause the third-
party setup program to fail as it will not be able to modify the MetaStock user interface.
It should also be noted that if the EqCustUI utility is temporarily copied to the end user's
hard drive, it must be deleted when the third-party setup program finishes.

MetaStock® Modifying the MetaStock User Interface • 7

Commands

Toolbar.Add
Toolbar.Add(<Command>,<Tip>[,<Parameters>])

Parameters
Command Specifies the action to be associated with the new button. Any syntax that

can be specified in the Windows “Run” dialog (Start> Run) can be
specified here. This includes executable files, internet URLs, and
documents that are associated with a valid program on the system.

Tip Specifies the status bar prompt and tooltip that will be associated with the
new button. The pipe character (|) can be used to specify separate
strings for the status bar prompt and the tooltip. In this case, the format of
this parameter is
"status bar prompt string"|"tooltip string".
If this parameter does not contain the pipe character then the same string
will be used for both the status bar prompt and the tooltip.

Parameters Specifies the parameter list that will be passed to the executable file when
the user selects the new toolbar button. The [and] characters specify that
this parameter is optional. These characters should not be used literally on
the EqCustUI utility command line. For example,
Toolbar.Add(<Command>,<Tip>[,<Parameters>]) can be
interpreted as Toolbar.Add(<Command>,<Tip>) or
Toolbar.Add(<Command>,<Tip>,<Parameters>).
Either method is valid.

Remarks
• This adds a button to the MetaStock Custom toolbar.
• The EqCustUI utility always adds the button to the MetaStock toolbar using the icon

associated with Command.
• There is no method for the developer to specify another icon to use, or to specify the

order in which the button is placed on the custom toolbar.

Note: This command does not modify existing buttons as duplicates are ignored. To modify a
button the developer must first delete it and then add it back in with the appropriate changes.

Example
EqCustUI "Toolbar.Add(www.mycompany.com,Browse our web

site|mycompany.com)"

Or
EqCustUI "Toolbar.Add(dlwin.exe,Express download,/express)"

8 • Modifying the MetaStock User Interface MetaStock®

Toolbar.Delete
Toolbar.Delete(<Command>)

Parameters
Command Specifies the action (executable file, internet URL, document, etc.) that is

associated with the button to delete.

Remarks
• This removes a button from the MetaStock Custom toolbar.
• The toolbar is searched until a button is found that is associated with this file.
• If a button is found it will be deleted.

IMPORTANT: Third-party developers should only delete the buttons they have created on the Custom
toolbar. A third-party developer should never delete another developer's button on the
toolbar. Doing so is a violation of the license agreement.

Example
EqCustUI "Toolbar.Delete(www.mycompany.com)"

Menu.AddItem
Menu.AddItem(<Location>,<Menu>,<Command>)

Parameters
Location Specifies the placement of the new menu item. Please note that MetaStock

uses two different and distinct menus. The first menu (Main) is used when
a chart is not opened on the screen, whereas the second menu (Chart) is
used when a chart is opened on the screen. For this reason menu items
must be added to both the Main menu and the Chart menu to be visible at
all times.
The following are the different locations available.

Menu Specifies the string to be placed on the menu.
Command Specifies the action that is associated with this menu item. Any syntax that

can be specified in the Windows run dialog (Start> Run) can be specified
here. This includes executable files, internet URLs, and documents that
are associated with a valid program on the system.
MetaStock supports several predefined literals that have special meaning.
These literals will be replaced with the appropriate value when the user
selects the menu item. The greater-than and less-than (< >) characters
must be included.

Placement Location (The menu is located:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools On the Tools menu when a chart is opened.

Chart-Help On the Help menu when a chart is opened.

MetaStock® Modifying the MetaStock User Interface • 9

The following are the literals supported by MetaStock.

Remarks
• Adds a menu item to the reserved section of either the MetaStock Tools menu or the

MetaStock Help menu.
• As of this writing, the reserved section on the Tools menu is directly above

Default colors and styles, whereas on the Help menu it is directly above
About MetaStock. The reserved sections are subject to change at any time.

• There is no method for the developer to specify the order in which the menu item is
placed in the specified reserved section.

• MetaStock must be restarted for menu modifications to take effect.

Note: This command does not modify existing menu items. To modify a menu item the developer
must first delete it and then add it back in with the appropriate changes.

Example
EqCustUI "Menu.AddItem(Main-Help,My company on the

web,www.mycompany.com)"

Menu.DeleteItem
Menu.DeleteItem(<Location>,<Menu>,<Command>)

Parameters
Location Specifies the placement of the menu item.

Please note that MetaStock uses two different and distinct menus.
The first menu (Main) is used when a chart is not opened on the screen,
whereas the second menu (Chart) is used when a chart is opened on the
screen.
The following are the different locations available.

Literal Description
<symbol> This literal is replaced with the symbol name of the security

on the active chart. This literal is only valid when a chart is
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<name> This literal is replaced with the actual name of the security
on the active chart. This literal is only valid when a chart is
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<periodicity> This literal is replaced with the periodicity of the security
on the active chart. Please note that this is the periodicity of
the underlying security as it was created with the MSFL,
not the current periodicity that the user has compressed to.
Valid values for this literal are Intraday, Daily, Weekly,
Monthly, Quarterly, and Yearly. This literal is only valid
when a chart is opened in MetaStock. Therefore, the
Location parameter must be Chart-Tools or Chart-Help.

Placement Location (The menu is located:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools On the Tools menu when a chart is opened.

Chart-Help On the Help menu when a chart is opened.

10 • Modifying the MetaStock User Interface MetaStock®

Menu Specifies the string of the item that is to be deleted.
Command Specifies the action that is associated with the menu item to be deleted.

Remarks
• This removes a menu item from the reserved section of either the MetaStock Tools

menu or the MetaStock Help menu.
• All three command parameters must be specified to be able to delete a menu item.
• MetaStock must be restarted for menu modifications to take effect.

IMPORTANT: Third-party developers should only delete the menu items that they have added.
A third-party developer should never delete another developer's menu item.
Doing so is a violation of the license agreement.

Example
EqCustUI "Menu.DeleteItem(Main-Help,My company on the

web,www.mycompany.com)"

Menu.AddPopupItem
Menu.AddPopupItem(<Location>,<ParentMenu>,<Menu>,<Command>)

Parameters
Location Specifies the placement of the new menu item. Please note that MetaStock

uses two different and distinct menus. The first menu (Main) is used when
a chart is not opened on the screen, whereas the second menu (Chart) is
used when a chart is opened on the screen. For this reason menu items
must be added to both the Main menu and the Chart menu to be visible at
all times.
The following are the different locations available.

ParentMenu Specifies the name of the parent menu item. Multiple levels can be nested
by using the forward slash (/) character. However, parent menus may not
begin or end with the / separator character. For example,
“My company/Support” would be a valid parent menu.

Menu Specifies the string to be placed on the menu.
Command Specifies the action that is associated with this menu item. Any syntax that

can be specified in the Windows run dialog (Start> Run) can be specified
here. This includes executable files, internet URLs, and documents that
are associated with a valid program on the system. MetaStock supports
several predefined literals that have special meaning. These literals will be
replaced with the appropriate value when the user selects the menu item.
The greater-than and less-than (< >) characters must be included.

Placement Location (The menu is located:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools On the Tools menu when a chart is opened.

Chart-Help On the Help menu when a chart is opened.

MetaStock® Modifying the MetaStock User Interface • 11

The following are the literals supported by MetaStock.

Remarks
• This creates a popup (nested) menu and its associated menu item(s).
• This command will create the parent menu item if it does not already exist.
• As of this writing, the reserved section on the Tools menu is directly above

Default colors and styles, whereas on the Help menu it is directly above
About MetaStock. The reserved sections are subject to change at any time.

• There is no method for the developer to specify the order in which the menu item is
placed in the specified reserved section.

• MetaStock must be restarted for menu modifications to take effect.

Note: This command does not modify existing menu items. To modify a menu item the developer
must first delete it and then add it back in with the appropriate changes.

Example
EqCustUI "Menu.AddPopupItem(Main-Help,My company,My company

on the web,www.mycompany.com)"

Menu.DeletePopupItem
Menu.DeletePopupItem(<Location>,<ParentMenu>,<Menu>

,<Command>)

Parameters
Location Specifies the placement of the menu item.

Please note that MetaStock uses two different and distinct menus.
The first menu (Main) is used when a chart is not opened on the screen,
whereas the second menu (Chart) is used when a chart is opened on the
screen.
The following are the different locations available.

Literal Description
<symbol> This literal is replaced with the symbol name of the

security on the active chart. This literal is only valid when a
chart is opened in MetaStock. Therefore, the Location
parameter must be Chart-Tools or Chart-Help.

<name> This literal is replaced with the actual name of the security
on the active chart. This literal is only valid when a chart is
opened in MetaStock. Therefore, the Location parameter
must be Chart-Tools or Chart-Help.

<periodicity> This literal is replaced with the periodicity of the security
on the active chart. Please note that this is the periodicity of
the underlying security as it was created with the MSFL,
not the current periodicity that the user has compressed to.
Valid values for this literal are Intraday, Daily, Weekly,
Monthly, Quarterly, and Yearly. This literal is only valid
when a chart is opened in MetaStock. Therefore, the
Location parameter must be Chart-Tools or Chart-Help.

Placement Location (The menu is located:)
Main-Tools On the Tools menu when no chart is opened.

Main-Help On the Help menu when no chart is opened.

Chart-Tools On the Tools menu when a chart is opened.

Chart-Help On the Help menu when a chart is opened.

12 • Modifying the MetaStock User Interface MetaStock®

ParentMenu Specifies the name of the parent menu item. Multiple levels can be nested
by using the forward slash (/) character. However, parent menus may not
begin or end with the / separator character. For example,
“My company/Support” would be a valid parent menu; while
“My company/Support/” is not valid.

Menu Specifies the string of the item that is to be deleted.
Command Specifies the action that is associated with the menu item to be deleted

Remarks
• Removes a menu from a popup (nested) menu.
• If the popup menu is empty after the deletion it will be removed.
• All four command parameters must be specified to be able to delete a menu item.
• MetaStock must be restarted for menu modifications to take effect.

IMPORTANT: Third-party developers should only delete the menu items that they have added.
A third-party developer should never delete another developer's menu item.
Doing so is a violation of the license agreement.

Example
EqCustUI "Menu.DeletePopupItem(Main-Help,My company,My

company on the web,www.mycompany.com)"

Command Line Switches
The following is a list of command line switches that the EqCustUI utility supports.
/h Help. Displays a help screen. No other switches or commands are processed.
/q Quiet. Prevents the EqCustUI utility from displaying error messages.

Errors
The Windows API function GetExitCodeProcess can be used to retrieve the EqCustUI
exit code. For batch files, the ERRORLEVEL command can be used to change
program flow.
The following is a list of possible exit codes that can be returned by EqCustUI.
Returned Value Meaning

0 The operation was successful. No error was encountered.
1 Cannot open the custom toolbar storage file. It is either locked or

MetaStock is not installed.
2 Cannot open the custom menu storage file. It is either locked or

MetaStock is not installed.
3 Out of memory.
4 Cannot add the button to the toolbar.
5 Cannot delete the button from the toolbar.
6 Cannot find the button on the toolbar.
7 Cannot add menu item.
8 Cannot delete menu item.
9 Cannot create popup (nested) menu.

10 Cannot open popup (nested) menu.
11 Cannot delete popup (nested) menu.
12 Cannot open the specified program, document, or internet resource.
13 Cannot read a file.
14 Cannot write to a file.

MetaStock® Formula Organizer Enhancements • 13

Formula Organizer Enhancements

Introduction
The Formula Organizer is a wizard (included with MetaStock versions 6.5 and above)
that allows you to import and export any MetaStock formula-based files including
custom indicators, system tests, explorations, and experts. For example, you can use the
Formula Organizer to import a set of add-on custom indicators, experts, etc. purchased
from a third-party. You could also create a set of add-on indicators, explorations, and so
on to distribute to your colleagues, and even protect your formulas with a password.
Enhancements to the Formula Organizer to import and export DLLs created with the
MetaStock External Functions API (MSX) were installed with this toolkit.
Enhancements were also added to facilitate the distribution of formulas by providing
copyright information, importing and exporting of templates, and creation of
self-extracting installation files.

IMPORTANT: These enhancements are only available with the Formula Organizer included with
MetaStock version 7.0 (any version) and above. You must have this toolkit and
MetaStock 7.0 or above installed to export MSX DLLs and templates.

If a MetaStock user that has not installed this toolkit attempts to export formulas that
call MSX DLLs, the user will be warned that anyone using these formulas must already
have the DLLs installed. Importing MSX DLLs and templates is available to any user
of MetaStock 7.0 or above. Importing MSX DLLs and templates does not require this
toolkit, but does require MetaStock (any version) 7.0 or above.
The following table indicates the capabilities of the currently released versions of
Formula Organizer and the Developer’s Kit.

Formula Organizer Function
without

MDK
with
MDK

Import custom indicators ! !
Import system tests ! !
Import explorations ! !
Import experts ! !
Import templates ! !
Import MSX DLLs ! !
Export custom indicators ! !
Export system tests ! !
Export explorations ! !
Export experts ! !
Option to include linked multimedia files with exported experts ! !
Export Templates !
Export MSX DLLs !
Create self-extracting installs !

14 • Formula Organizer Enhancements MetaStock®

CAUTION: Formula Organizer is not backward compatible, e.g. tools exported by the Formula
Organizer cannot be imported by an earlier version of the Formula Organizer.
For example, if you export using 7.03, a user with 7.01 cannot import your file. If you
export using 7.2, no user with 7.0x can import your file. The self-extracting installer will
not launch any version of Formula Organizer previous to 7.0.

Using the Formula Organizer to Export
When the Developer’s Kit is installed with MetaStock 7.0 or above, additional dialogs
are included in the Formula Organizer's export process. You will be prompted to:
• Choose formulas to export,
• Choose templates to export,
• Choose DLLs to export,
• Include a copyright information text file,
• Create a self-extracting installation file,
• Password-protect the formulas, and
• Password-protect the self-extracting installation file.

To Export using the Formula Organizer
1. Start any one of MetaStock's formula tools (Indicator Builder, System Tester,

The Explorer, Expert Advisor).
For example, select Tools> Indicator Builder to start the Indicator Builder.

2. Click the Organizer button.

Password protect exported components ! !
Password protect self-extracting install !
Copyright notice on self-extracting install !

Formula Organizer Function
without

MDK
with
MDK

Choose Indicator Builder

MetaStock® Formula Organizer Enhancements • 15

3. Choose Export formula files, then click Next.

4. Choose the Indicators, System Tests, Explorations, Experts, Templates, and DLLs to
Export. After choosing each type of tool to export, click Next to go to the next selection
dialog.

5. To create a self-extracting installation file, check Create Self-Extracting Installation.
In this example, the name of this file will be FOSetup.exe, but you may change it
after the export process is complete.

6. To include copyright information, or anything else that you would like to be displayed

when the installation file is run, type the file name of the text file containing this
information in the box shown above. This information is displayed after the extraction
and before the Formula Organizer begins importing the formulas. The user is forced to
click OK to proceed from the dialog displaying this text file.

7. Click the Edit button to launch your default text editor. You may edit an existing file, or
create a new text file to include.

8. Click Next to continue the export process.
9. Type the folder where you want the installation file (or formula files if you did not

choose to create an installation file) to be created. Click Next to continue.
10. Enter a password for the exported items, if desired.

Users will be prompted for the formula password any time they attempt to view the
formula for any of the tools you included in this export (for example, if a user selects
Tools> Indicator Builder, and then selects one of the indicators you exported,
the password prompt will appear when he or she clicks Edit).

Type text file name
here.

16 • Formula Organizer Enhancements MetaStock®

Note: If you created a self-extracting installation file, you may enter a password for the file in this
dialog. If you did not choose to create a self-extracting installation file, this option will not
be displayed in the dialog. The user will be prompted for the installation password
immediately after the installation file is run.

11. Click Finish to complete the export process.

Using the Self-extracting Installation File
The self-extracting installation file that you created (FOSetup.exe) contains all the
files that were exported. You may rename FOSetup.exe to any other name you wish
(e.g., SuperTools.exe) using Windows Explorer. Be sure to leave the .exe extension.
When the user runs FOSetup.exe, a temporary folder is created, the files are extracted
to it, and the user’s copy of the Formula Organizer (FormOrg.exe) will be executed to
import the files. If the self-extractor detects multiple versions of FormOrg.exe it will
require the user to select the desired version to run. After the import, the temporary
folder will be removed.
If any MSX DLLs are to be imported, they are copied to a temporary folder called
“~MSXIMPORTDLLS~” located under the user’s “External Function DLLs” folder.
If MetaStock is running when FormOrg is finishing, FormOrg sends a signal to
MetaStock to load the new DLLs. Otherwise, when MetaStock starts up it checks for
MSX DLLs in this folder and, if any exist, they are moved to the
“External Function DLLs” folder.
The password that can be applied to a self-extracting install allows you to distribute
your tools via a web page or email. The compressed tools are encrypted and require the
correct password to be extracted.

Installing the self-extracting installation file
Installation of the self-extracting installation file follows theis process. Once the process
is started, only steps 2 and 5 require user interaction.
1. The system is searched for formorg.exe. If multiple versions are detected, the user is

prompted to choose one.
2. If the installation file has been password protected, the user is prompted to enter the

password.
3. A temporary folder is created to hold the installation files.
4. The installation files are unzipped into the temporary folders.
5. If a copyright file was included, the contents of that file are displayed. The user must

click the OK button to proceed.
6. The formula files are imported by formorg.exe.
7. The temporary folders and their contents are removed.

MetaStock® DDE Data Interface • 17

DDE Data Interface

Overview
The Equis Dynamic Data Exchange Server (EqDdeSrv.exe) is installed as part of
MetaStock Professional version 7.0 and above. EqDdeSrv forms a general interface
bridge between the Equis Data Server, EqDatSrv.exe, and user applications. It allows
any DDE client to receive security price information as a single snapshot (cold-link) or
to receive price data changes as they occur (hot-link). One of the most common and
easy-to-use DDE clients available to most users is a spreadsheet, such as Microsoft
Excel. Programmers may choose to write their own DDE clients to interface with
EqDdeSrv in order to perform specialized functions. Applications that use EqDdeSrv
may be distributed to any MetaStock Professional user.

IMPORTANT: Never distribute EqDdeSrv.exe with your application. Your user will already have the
correct version for his data vendor.

Background
Dynamic Data Exchange, or DDE, is a communication protocol, based on the
messaging system built into Windows, which allows the transmission of messages
between programs. A conversation is established between two programs, which then
post messages to each other. In all cases, one of the programs is the server and the other
is the client. The DDE server program has access to data that it can make available to
the DDE client program. All DDE conversations are defined by a set of three character
strings:

“Service” (also called “Application”), “Topic”, and “Item” strings
The “Service” string is generally the DDE server file name, without the extension.
The vendor who wrote the DDE server defines the legal values for the “Topic” and
“Item” strings. The DDE client obtains data from the DDE server by specifying “Topic”
and “Item” strings. For example, EqDdeSrv uses the “Topic” string to identify a
security symbol, and the “Item” string to identify the specific price field for the
specified security.

Implementation
EqDdeSrv depends upon EqDatSrv, the Equis Data Server which also accompanies
MetaStock Professional. EqDatSrv is not a DDE server. It is intended to supply real-
time data to MetaStock Professional, and is configured to work with the real-time data
feed that the MetaStock customer has purchased. There are significant differences
between data vendors and the way they supply data. EqDatSrv’s job is to interface with
a particular vendor and normalize the data feed into a reasonably standard format,
hiding the significant differences from MetaStock Professional. The programmatic
interface to EqDatSrv can be complex, and is limited to specific programming language
constraints. EqDdeSrv, on the other hand, will work with any DDE client that sends
through the correct character strings. When EqDdeSrv is started, it will in turn start up
EqDatSrv (if necessary). EqDdeSrv is both a client and a server, in that it obtains data
from EqDatSrv as a client, then provides that data as a DDE server.

18 • DDE Data Interface MetaStock®

Interface
The Service, or Application, string is always “EQDDESRV”. Topic is generally the
security or index symbol, with the exception of the reserved topic “SYSTEM”. A
discussion of the System topic appears later in this document (see page 20).

Note: Keep in mind that security and index symbols may be vendor-specific. If your client
application contains hard-coded security or index symbols, it may be limited to working only
with the data vendor you are using.)

Item is one of the following strings:

Note: EqDdeSrv always returns price data as a formatted string (CF_TEXT type). With the
exception of the Date and Time strings (mm/dd/yyyy and hh:mm), all strings are formatted
as a floating point number with a maximum of four decimal places.

Running EqDdeSrv.exe
EqDdeSrv can be started by clicking on the “Equis DDE Server” shortcut in the Equis
program folder. If you want your application to start EqDdeSrv.exe, you can locate it
by examining the registry at: “HKEY_CURRENT_USER\Software\Equis\Common”.
Beginning with version 7.0 of MetaStock, there will be a registry key below “Common”
for each version that is currently installed (i.e. “7.0”). Below the version number is a
registry key “File Paths” which contains a string “ProgramPath”.
The ProgramPath string indicates the folder where the MetaStock executables are
located. Append the folder “\Servers” to the program path and verify the existence of
EqDdeSrv.exe.

CAUTION: If there are multiple versions of MetaStock installed, your application should display a
dialog with each of the versions and allow the user to pick the correct one.

Note: Before starting EqDdeSrv from your program, attempt to establish a connection with it to
determine if it is already running. Arbitrarily running EqDdeSrv.exe when it is already
running will cause EqDdeSrv to display its summary window.

“OPEN” Opening price

“HIGH” High price so far today

“LOW” Low price so far today

“LAST” Latest price today

“PREVCLOSE” Previous trading day’s closing (last) price

“CHANGE” LAST - PREVCLOSE

“TOTALVOL” Total volume today

“YDTOTALVOL” Total volume yesterday (futures only)

“TRADEVOL” Volume of last trade
(this value will be 0 with some data vendors
until the first trade occurs after requesting
values for the specific security)

“DATE” Last trade date (mm/dd/yyyy)

“TIME” Last trade time (hh:mm)

“OPENINT” Open interest (if applicable, otherwise 0)

“BID” Bid

“ASK” Ask

“BIDSIZE” Bid size

“ASKSIZE” Ask size

MetaStock® DDE Data Interface • 19

After starting, EqDdeSrv will appear as an icon in the System Tray. A right-click with
the mouse on the icon will present the following four menu choices: Open, Help,
About, and Close.

Open causes EqDdeSrv to present a summary screen similar to this:

The summary screen shows a current count of several DDE functions, including the
time of the last operation for each function and the symbol involved in the last
operation. In addition, the summary screen shows the activity of the Equis Data Server,
which is supplying data to the DDE server. All counts (with the exception of
“Connections”) and times can be reset using the Reset Counts menu option under File.
The entries in the “Operation” column are as follows:

CAUTION: If you attempt to close EqDdeSrv while there are active conversations
(DDE clients receiving data from EqDdeSrv), a warning similar to the following is
displayed:

Entry Meaning
Connections Number of active connections, or conversations with DDE clients.

There is 1 active connection for each security requested by each
client. For example, if a client is requesting updates for several price
fields for only two securities, there will be two connections for that
client represented in the “Count” column.

Data Requests Number of cold-link requests that the DDE Server has received.
Advise Requests Number of hot-link requests that the DDE Server has received.
Advise Callbacks Number of hot-link updates that the DDE Server has processed.
System Requests Number of “System” Topic requests already serviced by the DDE

server. The last System function (Item) is displayed in the “Last”
column.

EqDatSrv Updates Number of updates that the DDE server has received from the Equis
Data Server.

20 • DDE Data Interface MetaStock®

System Topic
The “System” topic allows a DDE Client to obtain certain information about the DDE
Server. #define entries for the standard system topics are included in the ddeml.h
file that accompanies most Windows compilers. Although use of the #define is
recommended, the actual string constants are presented here. Only the Topic and Item
fields are shown in the table. The following System topics are supported by EqDdeSrv:

Examples

Microsoft Excel Example.
Microsoft Excel has the ability to act as a general DDE client. You can specify a DDE
hot-link in any cell by entering a formula of the form:

=Server|'Topic'!Item

The server is separated from the topic by the vertical solid bar character, and the topic is
separated from the item by an exclamation point. For example, to observe the
constantly updated last price for Microsoft, you would enter the following formula in
any cell:

=EQDDESRV|'MSFT'!LAST

Notes:
• The case of the topic is important only if the data vendor is case sensitive.
• The date and time strings are converted by Excel to Julian dates. You must apply

Excel date and time formatting to view these fields in MM/DD/YYYY format.
The Excel screen shown on the next page has a DDE formula in each cell that is
displaying a price value. The %Chg column is calculated from the LAST and
PREVCLOSE columns. All values update in real time, and the pie chart at the bottom
constantly reflects the changes in the TRADEVOL column. The cursor is on cell E3,
and you can observe the formula in the Excel edit line:

Topic Item Returned Data
System Topics Tab delimited list of all securities with active connections.
System SysItems Tab delimited list of all supported System Topics: “Topics”,

“SysItems”, “Status”, “Formats”, and “TopicItemList”.
System Status EqDdeSrv always returns “Ready”.
System Formats EqDdeSrv always returns “Text”. CF_TEXT is the only format

supported by EqDdeSrv.
Security
Symbol

TopicItemList Note: A security symbol is specified in the Topic field.
Returned data is a tab delimited list of all the price fields that have
an active advise request by any DDE Client. For example, if two
DDE clients have hot-links to Microsoft stock, and the first is
watching “LAST” and “TRADEVOL”, and the second is watching
“LAST” and “OPEN”, the returned data would by a tab delimited
string containing “OPEN”, “LAST”, and “TRADEVOL”.

MetaStock® DDE Data Interface • 21

Formula for cell E3 Cursor location (cell E3)

22 • DDE Data Interface MetaStock®

Simple C Example
/* EqDDeDemo - This DDE client is a short example of how to obtain price
 data from the Equis DDE Server (EQDDESRV.EXE).
*/

#include <windows.h>
#include <ddeml.h>
#define WM_USER_INIT_DDE (WM_USER + 1) // Event to initialize DDE

// Window callback
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

// DDE callback
HDDEDATA CALLBACK DdeCallback (UINT, UINT, HCONV, HSZ, HSZ, HDDEDATA, DWORD, DWORD);
DWORD idInst; // global program instance
HCONV hConv; // global handle to DDE conversation
HWND hWnd; // global handle to window

char szValue[20]; // receives values obtained from DDE server
char szAppName[] = "EqDdeDemo";

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 MSG Msg;
 WNDCLASSEX WndClass;

 strcpy(szValue, "<wait>"); // Initialize value string

 // Fill the Wind Class structure
 WndClass.cbSize = sizeof(WndClass);
 WndClass.style = CS_HREDRAW | CS_VREDRAW;
 WndClass.lpfnWndProc = WndProc;
 WndClass.cbClsExtra = 0;
 WndClass.cbWndExtra = 0;
 WndClass.hInstance = hInstance;
 WndClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClass.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);
 WndClass.lpszMenuName = NULL;
 WndClass.lpszClassName = szAppName;
 WndClass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx (&WndClass);

 // hard-code a small window size & location for demo purposes
 hWnd = CreateWindow (szAppName, "Equis DDE Client Demo",
 WS_OVERLAPPEDWINDOW,
 100, 100, 250, 70,
 NULL, NULL, hInstance, NULL);

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

 // Initialize the DDEML library
 if (DdeInitialize (&idInst, (PFNCALLBACK) &DdeCallback,
 APPCLASS_STANDARD | APPCMD_CLIENTONLY, 0L))
 {
 MessageBox (hWnd, "Unable to initialize DDE client.",
 szAppName, MB_ICONEXCLAMATION | MB_OK);
 DestroyWindow(hWnd);
 return FALSE;
 }

 // Start the DDE conversation
 SendMessage(hWnd, WM_USER_INIT_DDE, 0, 0L);

 while (GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
DdeUninitialize(idInst);

return Msg.wParam;

MetaStock® DDE Data Interface • 23

}

LRESULT CALLBACK WndProc (HWND hWnd, UINT nMsg, WPARAM wParam, LPARAM lParam)
{
 static char szService[] = "EQDDESRV";
 static char szTopic[] = "MSFT"; // Microsoft stock;
 static char szItem[] = "LAST";

 switch (nMsg)
 {
 case WM_USER_INIT_DDE:
 {
 HSZ hszService;
 HSZ hszTopic;
 HSZ hszItem;
 HDDEDATA hData;

 // Try to connect to DDE server
 hszService = DdeCreateStringHandle (idInst, szService, 0);
 hszTopic = DdeCreateStringHandle (idInst, szTopic, 0);
 hConv = DdeConnect (idInst, hszService, hszTopic, NULL);

 if (hConv == NULL)
 {
 // Server isn't loaded - try to load it...
 WinExec (szService, SW_SHOWMINNOACTIVE);
 hConv = DdeConnect(idInst, hszService, hszTopic, NULL);
 }

 // Finished with the service and topic string handles
 DdeFreeStringHandle (idInst, hszService);
 DdeFreeStringHandle (idInst, hszTopic);

 if (hConv == NULL) // Couldn't start the server!
 {
 MessageBox(hWnd,
 "Unable to connect with EqDdeSrv.exe",
 szAppName, MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 // Request current value of MSFT "Last" price (cold-link).
 // This is a synchronous snap-shot of data.
 hszItem = DdeCreateStringHandle (idInst, szItem, 0);
 hData = DdeClientTransaction(NULL, 0, hConv, hszItem,
 CF_TEXT, XTYP_REQUEST, 3000, NULL);
 if (hData != NULL)
 {
 DdeGetData(hData, (unsigned char *) szValue, sizeof(szValue), 0);
 InvalidateRect(hWnd, NULL, FALSE);
 DdeFreeDataHandle(hData);
 }

// Request notification of changes in MSFT "Last" price (hot-link).
// This will cause XTYP_ADVDATA events to be sent to the dde callback function
// each time the "Last" value changes.

 DdeClientTransaction(NULL, 0, hConv, hszItem, CF_TEXT,
 XTYP_ADVSTART | XTYPF_ACKREQ, 3000, NULL);
 DdeFreeStringHandle (idInst, hszItem);
 }
 return 0;
 case WM_PAINT:
 {
 HDC hDc;
 PAINTSTRUCT ps;
 char szBuf[100];

 hDc = BeginPaint (hWnd, &ps);
 TextOut(hDc, 10, 10, szBuf,
 wsprintf (szBuf, "Microsoft Last Value: %s", szValue));
 EndPaint(hWnd, &ps);
 }
 return 0;
 case WM_CLOSE:
 if (hConv != NULL)
 {
 HSZ hszItem;

24 • DDE Data Interface MetaStock®

 hszItem = DdeCreateStringHandle (idInst, szItem, 0);
 DdeClientTransaction (NULL, 0, hConv, hszItem, CF_TEXT, XTYP_ADVSTOP,

3000, NULL);
 DdeFreeStringHandle (idInst, hszItem);
 DdeDisconnect (hConv);
 }
 break;
 case WM_DESTROY:
 PostQuitMessage (0);
 return 0;
 default:
 break;
 }
 return DefWindowProc (hWnd, nMsg, wParam, lParam);
}

HDDEDATA CALLBACK DdeCallback (UINT nType, UINT nFmt, HCONV hConv,HSZ hSz1, HSZ hSz2,
HDDEDATA hData, DWORD dwData1, DWORD dwData2)

{
 HDDEDATA Rtrn;

 switch (nType)
 {
 case XTYP_ADVDATA:
 if (nFmt == CF_TEXT)
 {
 /*
 // You could get the name of the item being updated
 // if you wish by calling DdeQueryString:
 char szItem[20];
 DdeQueryString (idInst, hSz2, szItem, sizeof(szItem), 0);
 */
 // Get the actual data
 DdeGetData(hData, (unsigned char *) szValue, sizeof(szValue), 0);
 InvalidateRect(hWnd, NULL, FALSE);
 Rtrn = (HDDEDATA) DDE_FACK;
 }
 else
 Rtrn = (HDDEDATA) DDE_FNOTPROCESSED;
 break;
 case XTYP_DISCONNECT:
 hConv = NULL;
 Rtrn = NULL;
 break;
 default:
 Rtrn = NULL;
 break;
 }

 return Rtrn;
}

The output of the preceding program is a small window similar to the following, with a
constantly updated price value:

Suggested Resources
• Programming Windows 95 by Charles Petzold, Microsoft Press
• C/C++ User’s Journal, August 1998, “Encapsulating DDE” by Giovanni Bavestrelli

(Presents an excellent C++ framework for developing DDE applications)
• Microsoft Developers Network.

MetaStock® MetaStock External Functions (MSX) • 25

MetaStock External Functions (MSX)

Introduction
This chapter explains the use of the MSX API and provides several examples of how to
use it correctly. It contains the instructions necessary to implement MSX DLLs, and
assumes that the developer is an experienced programmer familiar with security price
data and with creating dynamic link libraries.

The MetaStock External Function (MSX) Application Programming Interface (API)
allows software developers to dynamically add externally defined functions to the
MetaStock Formula Language. This feature is available in all releases of MetaStock
above (and including) version 7.0.
When MetaStock initializes, it scans a pre-defined folder, looking for any DLLs that
correctly implement the MSX API. When an MSX DLL is found, the functions that it
implements are automatically added to the MetaStock Formula Language.
These new functions can be used to create Custom Indicators, Explorations, System
Tests and Expert Advisors using MetaStock's formula tools.
The MSX API supports any programming language that meets the following criteria:
• Exports DLL functions by name
• Supports the Windows stdcall stack frame convention
• Creates 32-bit DLLs for Windows 2000, Windows XP, or Windows NT version 4.0

or greater (commonly called a Win32 DLL)

Note: Microsoft Visual Basic does not have the capability to produce a Win32 DLL.
Therefore, MSX DLLs cannot be written in Microsoft Visual Basic. A good alternative for
VB programmers is PowerBASIC, an inexpensive compiled Basic that is syntax-compatible
with VB and can produce Win32 DLLs.

MSX DLL Capabilities
The functions that can be implemented in MSX DLLs are similar in behavior to the
standard built-in MetaStock functions. In other words, MSX functions can be written to
perform calculations based on any available price data or results of other functions.
All MSX DLL functions return a data array. This exactly parallels the behavior of the
MetaStock built-in functions. The returned data array can be plotted by
Custom Indicators or used in any way that a standard built-in function can be used.
MSX DLLs can perform calculations of virtually unlimited complexity. You have the
full power of conventional programming languages like C or Pascal with all of their
logic, data manipulation and rich flow-control capabilities.
Things that you can do with an MSX DLL
Things that you can do with an MSX DLL include:
• Implement functions not provided with MetaStock.
• Perform complex calculations on price data.
• Provide multiple functions in a single MSX DLL.
• Access stored MetaStock price data using MSFL (included in the MetaStock

Developer’s Kit — see the MSFL documentation later in this manual for details).

26 • MetaStock External Functions (MSX) MetaStock®

• Create functions that can be used by Custom Indicators, System Tests, Explorations,
and Experts.

• Distribute your compiled MSX DLL to other users.

Things that you cannot do with an MSX DLL
Things that you cannot do with an MSX DLL include:
• Manipulate GUI functions, including plotting and user dialogs.
• Access the standard MetaStock built-in functions from within your DLL.

Getting Assistance
Due to the complexity of programming languages and development environments,
Equis is able to provide only minimal technical support for the MSX API.
We will help with understanding how to use the MSX API, but we cannot aid in writing
or debugging your DLL.
Important Notes
• This manual explains the use of the MSX API and provides several examples of how

to use it correctly.
• It is imperative that you read this entire chapter, in the order presented, to successfully

create an MSX DLL.
• It is essential that you follow all specified programming guidelines and API

requirements. External DLLs receive pointers to data structures allocated by
MetaStock. Failure to follow the MSX programming guidelines may result in your
DLL modifying memory outside the boundaries of the defined data structures,
potentially corrupting other MetaStock variables and causing loss of the user’s data.

Note: Equis shall not be responsible for any damages of any type caused by MSX DLLs.

For more information on Technical Support for the MetaStock Developer’s Kit,
see page 4.

Overview
MetaStock will automatically recognize and load any MSX DLL that exists in the
“External Function DLLs” folder, which is a subfolder of the MetaStock system
folder.
An MSX DLL implements one or more external functions that can be called from
within any formula in MetaStock. In order to implement an external function, an
MSX DLL must perform two basic tasks:
• Define the function syntax including the function name, number of arguments, and

argument types.
• Calculate the results of the function when it is called and return those results to

MetaStock.
Each external function has a unique name that identifies the function within a
MetaStock formula. The syntax for each function can define up to nine arguments that
supply numeric data for calculations or control the behavior of the calculation.
MetaStock users call external functions from within formulas by using the External
Formula function:

ExtFml("DLL Name.Function Name",arg1,…,argn)
As an example, if an MSX DLL named MyDLL implements a function called
MyFunction, which accepts a single price data argument, the function can be called
from any MetaStock formula by the following:

ExtFml("MyDLL.MyFunction", close)

MetaStock® MetaStock External Functions (MSX) • 27

MSX DLLs export two to four initialization functions by name. These functions are
used by MetaStock to query the DLL about the functions that are implemented in
the DLL. While the DLL initialization functions themselves are rigidly defined by the
MSX API, the external functions that they define are extremely flexible.
As mentioned earlier, external functions have names that are defined by the MSX DLL
and can have up to nine arguments. Each argument defined for a function can be one of
four types:
• Data Arrays (e.g., Open, High, Low, Close, etc., or the results of another function)
• Numeric Constants (e.g., 10, 20, -50, etc.)
• String Constants (e.g., “Hello World”, etc.)
• Customized sets (e.g., SIMPLE, EXPONENTIAL, etc.)
Details and examples of how a DLL defines these arguments are presented later in this
document.
Extreme care must be taken by the programmer to ensure that all MSX DLL functions
are well-behaved. Because they are called directly by MetaStock, any fatal exception
caused by an MSX DLL function will affect MetaStock — possibly causing a forced
shutdown and loss of user data. MetaStock attempts to trap all common exceptions, but
authors of MSX DLLs should not rely on having their exceptions handled by
MetaStock. Any serious exception that MetaStock traps will cause the DLL containing
the offending function to be detached and the external functions it contains will not be
available to the MetaStock user.

Function Prototype Section
The functions defined in an MSX DLL fall into two categories: Initialization Functions
and Calculation (or External) Functions. Initialization functions are called by
MetaStock during startup to determine what external functions are available and what
arguments they require. Calculation functions are the functions that are available to
MetaStock users who use your MSX DLL.

Initialization Functions

MSXInfo
This is the first function called in an MSX DLL. It returns basic information about the
DLL and verifies that it is a valid MSX DLL. This function is required and will always
be called during initialization.
C
BOOL __stdcall MSXInfo (MSXDLLDef *a_psDLLDef)

Delphi Pascal
function MSXInfo (var a_psDLLDef : MSXDLLDef)

: LongBool; stdcall;

PowerBASIC/DLL
FUNCTION MSXInfo SDECL ALIAS “MSXInfo” (_

a_psDLLDef AS MSXDLLDef PTR) EXPORT AS LONG

Parameters

Return Values
• MSX_SUCCESS if successful
• MSX_ERROR for internal error

a_psDLLDef Pointer to the MSXDLLDef structure to be filled with copyright, number
of external functions, and MSX version. See page 32.

28 • MetaStock External Functions (MSX) MetaStock®

MSXNthFunction
This function is called once during initialization for each external function specified by
the MSXInfo call. See “MSXInfo” (page 27) for more details on using this function.
C
BOOL __stdcall MSXNthFunction (int a_iNthFunc,

MSXFuncDef *a_psFuncDef)

Delphi Pascal
function MSXNthFunction (a_iNthFunc: Integer;

var a_psFuncDef: MSXFuncDef)
:LongBool; stdcall;

PowerBASIC/DLL
FUNCTION MSXNthFunction SDECL ALIAS “MSXNthFunction” (_

BYVAL a_iNthFunc as LONG, _
a_psFuncDef AS MSXFuncDef PTR) EXPORT AS LONG

Parameters

Return Values
• MSX_SUCCESS if successful
• MSX_ERROR for internal error

MSXNthArg
This function is called once during initialization for each argument specified for each
external function. If none of the external functions have arguments this function will not
be called and is not required.
C
BOOL __stdcall MSXNthArg (int a_iNthFunc,

int a_iNthArg,

MSXFuncArgDef *a_psFuncArgDef)

Delphi Pascal
Function MSXNthArg (a_iNthFunc: Integer;

a_iNthArg: Integer;

var a_psFuncArgDef: MSXFuncArgDef)

: LongBool; stdcall;

PowerBASIC/DLL
FUNCTION MSXNthArg SDECL ALIAS “MSXNthArg” _

BYVAL a_iNthFunc AS LONG, _
BYVAL a_iNthArg AS LONG, _

a_psFuncArgDef AS MSXFuncArgDef PTR)
EXPORT AS LONG

Parameters

a_iNthFunc The zero-based index indicating which function’s information is
requested.

a_psFuncDef Pointer to the MSXFuncDef data structure (page 32) to be filled in with
external function information..

a_iNthFunc The zero-based index indicating which function’s information is
requested.

a_iNthArg The zero-based index indicating which argument of the specified
function’s information is requested.

MetaStock® MetaStock External Functions (MSX) • 29

Return Values
• MSX_SUCCESS if successful
• MSX_ERROR for internal error

MSXNthCustomString
This function is called once during initialization for each Custom Argument variation
specified for each external function. If none of the external functions have custom
arguments this function will not be called and is not required.
C
BOOL
__stdcall
MSXNthCustomString (int a_iNthFunc,

int a_iNthArg,
int a_iNthString,

MSXFuncCustomString *a_psCustomString)

Delphi Pascal
function
MSXNthCustomString (a_iNthFunc: Integer;

a_iNthArg: Integer;
a_iNthString:Integer;

var a_psCustomString: MSXFuncCustomString)
: LongBool; stdcall;

PowerBASIC/DLL
FUNCTION MSXNthCustomString SDECL ALIAS “MSXNthCustomString” (_

BYVAL a_iNthFunc AS LONG, _
BYVAL a_iNthArg AS LONG, _
BYVAL a_iNthString AS LONG, _

a_psCustomString as MSXFuncCustomString PTR) _
EXPORT AS LONG

Parameters

Return Values
• MSX_SUCCESS if successful
• MSX_ERROR for internal error

a_psFuncArgDef Pointer to the MSXFuncArgDef data structure (page 33) to be filled in
with external function argument information.

a_iNthFunc The zero-based index indicating which function’s information is
requested.

a_iNthArg The zero-based index indicating which argument of the specified
function’s information is requested.

a_iNthString The zero-based index indicating which string of the custom
argument of the specified function is requested.

a_psCustomString Pointer to the MSXFuncCustomString data structure (page 34) to
be filled in with external function custom argument information.

30 • MetaStock External Functions (MSX) MetaStock®

Calculation Functions
All external calculation functions have the following prototype:
C
BOOL
__stdcall
<FuncName> (const MSXDataRec *a_psDataRec,

const MSXDataInfoRecArgsArray *a_psDataInfoArgs,
const MSXNumericArgsArray *a_psNumericArgs,
const MSXStringArgsArray *a_psStringArgs,
const MSXCustomArgsArray *a_psCustomArgs,

MSXResultRec *a_psResultRec)

Delphi Pascal
function
<FuncName> (const a_psDataRec: PMSXDataRec;

const a_psDataInfoArgs: PMSXDataInfoRecArgsArray;
const a_psNumericArgs: PMSXNumericArgsArray;
const a_psStringArgs: PMSXStringArgsArray;
const a_psCustomArgs: PMSXCustomArgsArray;
var a_psResultRec: MSXResultRec)

: LongBool; stdcall;

PowerBASIC/DLL
FUNCTION
<FuncName> SDECL ALIAS “<FuncName>” _

(a_psDataRec AS MSXDataRec PTR, _
 a_psDateInfoArgs AS MSXDataInfoRecArgsArray PTR, _
 a_psNumericArgs AS MSXNumericArgsArray PTR, _
 a_psStringArgs AS MSXStringArgsArray PTR, _
 a_psCustomArgs AS MSXCustomArgsArray PTR, _
 a_psResultRec AS MSXResultRec PTR) EXPORT AS LONG

Note: <FuncName> is the name of your function. The name listed in the EXPORTS section or
ALIAS string of your code and the name returned by the MSXNthFunction (page 28) must
exactly match the spelling and case of this function name.

Parameters

Cautions:
• Do not write values to the a_psResultRec->psResultArray->pfValue array beyond the

index value of a_psDataRec->sClose.iLastValid. Writing beyond that point will
corrupt MetaStock system memory, and may cause a loss of user data.

• MetaStock does not support iLastValue indexes greater than the iLastValue index of
the ‘Close’ data array. See page 58 for more details.

a_psDataRec The read-only data structure that contains all available price data and
security details. This structure is always passed to all calculation
functions, regardless of their defined argument lists. (page 36).

a_psDataInfoArgs The read-only data array arguments expected by the function. (page 38).
a_psNumericArgs The read-only Numeric (float) arguments expected by the function.

(page 39).
a_psStringArgs The read-only String arguments expected by the function. (page 39).
a_psCustomArgs The read-only custom argument ID’s expected by the function.

(page 39).
a_psResultRec A data structure containing the data array that your function will fill with

data to be returned to MetaStock. Be sure to set both iFirstValid and
iLastValid in a_psResultRec->psResultArray before returning from
your function.

MetaStock® MetaStock External Functions (MSX) • 31

Return Values
• MSX_SUCCESS if successful
• MSX_ERROR for internal error

Data Types
The MSX API defines several data types and structures, which are used to transfer
information between MetaStock and MSX DLLs.

Formats
This section is an overview of the different data types.

Dates
Dates are of type long and are stored in a year, month, day format (YYYYMMDD) with
the year being a four digit year (e.g. January 15, 1997 is stored in a long as 19970115).
Valid dates range from January 1, 1800 to December 31, 2200.

Times
Times are of type long and are stored in hour, minutes, tick order (HHMMTTT)
(e.g. 10:03:002 is stored in a long as 1003002). Times are always in twenty-four hour format.
Notice that the last segment of the time is not seconds, but ticks. MetaStock uses a tick count
instead of seconds to handle the case of multiple ticks per second without duplication of
records. The first tick of a minute is 000, the second is 001, and so on, up to 999. If more than
1000 ticks occur in any given minute, the 999 tick count will repeat until the minute is reset.
This condition is not an error. Valid times range from 00:00:000 to 23:59:999.

Strings
Strings are of type char and are stored as null (zero) terminated char sequences.
Care must be taken when writing to any strings passed into your DLL that characters are
not written beyond the defined string boundaries. All writeable strings in MSX
structures are of MSX_MAXSTRING size. MSX_MAXSTRING is defined in the
MSXStruc.h (MSXStruc.inc for Delphi, MSXStruc.bas for PowerBASIC) file.
When writing data to a string be sure to include the null byte at the end.

CAUTION: Writing beyond the defined string boundaries may cause an unrecoverable exception
that could result in loss of user data.

Variable Notation
The MSX data structures, function prototypes, and source code templates use a form of
Hungarian notation to designate the type of each variable or structure member. The type
prefixes each variable name. A list of the notations used by the MSX API follows:
Notation Type Description
c char Character, an 8-bit signed value.
f float Single precision, 32-bit floating point number.
lf double Double precision (long float) 64-bit floating point number.
i int Integer, a 32-bit signed value. (PowerBASIC integers are 16-bit.)
l long Long integer, a 32-bit signed value.
p All Pointer, a 32-bit address.
s All Structure, a user defined type.
sz char Null terminated string of signed characters.
b BOOL Boolean int (32-bit) values.
l_ All Local variables (defined inside function).
a_ All Arguments (passed into functions).

32 • MetaStock External Functions (MSX) MetaStock®

Initialization Structures
The following structures are used to communicate between MetaStock and the MSX
API initialization functions. These structures allow the MSX DLL to give MetaStock
information regarding function names and function syntax information.

Note: All data structure examples are shown using “C” syntax, and are found in the MSXStruc.h
file included with the MetaStock Developer’s Kit. Corresponding data structure definitions
for Delphi Pascal and PowerBASIC/DLL can be found in the MSXStruc.pas and
MSXStruc.bas files, respectively.

MSXDLLDef structure
This structure contains fields that define the DLL copyright, the number of external
functions exported by the DLL, and the MSX version number. It is used exclusively by the
MSXInfo function. See “MSXInfo” (page 27) for more details on using this function.

typedef struct
{

char szCopyright[MSX_MAXSTRING];
int iNFuncs;
int iVersion;

} MSXDLLDef;

Parameters

MSXFuncDef structure
This structure describes the attributes of an external function that will be exported by
the DLL for use by the MetaStock Formula Language. It is used exclusively by
MSXNthFunction function. See “MSXNthFunction” on page 28 for more details on
using this function.

typedef struct
{

char szFunctionName[MSX_MAXSTRING];
char szFunctionDescription [MSX_MAXSTRING];
int iNArguments;

} MSXFuncDef;

Parameters

szCopyright A copyright or other information about this DLL should be copied into this
string. Care must be taken not to write more than MSX_MAXSTRING
characters.

iNFuncs The number of external functions exported by this DLL.
iVersion The MSX version number. This should be set to the constant

MSX_VERSION.

szFunctionName The exported name of the external function. This is the function
name that will be used in the ExtFml() call by the MetaStock
user.

Note: This name must exactly match the spelling and case used in the
EXPORTS or ALIAS section of your code (see example
programs). This is the name used by the GetProcAddress
system call to obtain the address of this function at runtime.

szFunctionDescription The longer description of the external function.
This is displayed in the MetaStock Paste Functions Dialog.

MetaStock® MetaStock External Functions (MSX) • 33

MSXFuncArgDef structure
This structure defines a specific argument for an external function. It is used exclusively
by the MSXNthArg function. See “MSXNthArg” (page 28) for more details on using this
function.

typedef struct
{
 int iArgType;
 char szArgName[MSX_MAXSTRING];
 int iNCustomStrings;
} MSXFuncArgDef;

Parameters

iNArguments The number of arguments that the external function expects.
You may specify up to a maximum of MSX_MAXARGS (9)
arguments. Functions with zero arguments are valid. All
functions, regardless of the number of defined arguments, will
have access to security price data and security detail
information for performing calculations. Price data and security
details are automatically supplied to all functions without the
need for an explicit argument.

iArgType The argument type. There are four valid argument types:
MSXDataArray Specifies that the argument can be a security price

array (e.g., Open, High, Low, Close, etc.), a numeric
constant (e.g., 10, 20, -5, etc.), or the result of
another function (e.g., Mov(c,30,s)).

MSXNumeric Specifies that the argument must be a numeric
constant (e.g., -5, 10, 20, -15, etc.). Checks for valid
constant ranges must be made during calculation
(i.e., MetaStock does not know, and therefore cannot
check, if the number is within a valid range).

MSXString Specifies that the argument must be a quote-
enclosed string (e.g., “MSFT” or “COMPLEX”).
When a calculation is called, the string supplied by
the user is passed to the MSX DLL calculation
function exactly as it appears within the quotes.

MSXCustom Specifies that the argument must be from a defined set
of possible entries. This is also known as a “custom
string” argument. As an example, a custom string could
be defined that allows a user to enter SIMPLE,
EXPONENTIAL or WEIGHTED for an argument.
When a user calls the external function, this argument
must contain the text SIMPLE, EXPONENTIAL or
WEIGHTED (not enclosed in quotes). If the argument
contains some other sequence of characters, it is
flagged as a syntax error.
Note: Custom arguments are not case-sensitive.
A user could enter SiMPle for the example mentioned
above and it would be accepted for SIMPLE.

34 • MetaStock External Functions (MSX) MetaStock®

Notes:
• MetaStock does not do a partial match on custom strings
• All legal variations of a string must be specified
• Case is ignored

MSXFuncCustomString structure
This structure defines an allowable string for a custom argument in an external function.
It is used exclusively by the MSXNthCustomString function. See
“MSXNthCustomString” (page 29) for more details on using this function.

typedef struct
{

char szString[MSX_MAXSTRING];
int iID;

} MSXFuncCustomString;

Parameters

IMPORTANT: Strings used to define custom arguments must consist only of alphanumeric characters,
e.g., A…Z, a…z, 0…9. No spaces or special characters are allowed. If illegal characters
are detected in your custom arguments, MetaStock will fail the loading of the DLL and
the external functions that it implements will not be available for use.

szArgName This is the name of the argument displayed by the MetaStock Paste
Functions dialog. This name is also used to identify the argument to the
user when they have a syntax error in their ExtFml() call. For example,
the names of the second and third parameters of the MetaStock built-in
moving average function MOV are ‘PERIODS’ and ‘METHOD’
respectively. If a user left out the second parameter when entering the
ExtFml() function in a Custom Indicator, MetaStock would place the
cursor at the location of the second argument and display a message
similar to: PERIODS expected.

iNCustomStrings The number of custom strings associated with this argument, if it is of
type MSXCustom. For example, if you were defining the third parameter
of the MetaStock built-in moving average function MOV, this entry
would be 14 for: EXPONENTIAL, SIMPLE, TIMESERIES,
TRIANGULAR, WEIGHTED, VARIABLE, VOLUMEADJUSTED, E,
S, T, TRI, W, VAR, and VOL.

szString This is the definition of the string. The case will be ignored when MetaStock
attempts to match a user argument with this string. Names may consist of
alphanumeric characters only (A through Z, a through z, and 0 through 9).
Spaces or other special characters are not allowed.

iID This is a numeric ID associated with this string. When a call is made to calculate
a function in an MSX DLL, this ID is passed to the calculation function rather
than the string (szString) itself. Each string must have an ID value. If the MSX
DLL defines multiple strings that are synonyms for the same argument (e.g.,
SIMPLE, SIM, S) then the same ID value should be associated with each string.

MetaStock® MetaStock External Functions (MSX) • 35

Calculation Structures
These structures are used by MetaStock and MSX DLLs during the calculation of
indicators. All calculation functions in an MSX DLL share a common prototype.
The structures that are passed to these functions contain all the security price data
(e.g., Open, High, Low, etc.), security details, and function argument data required for
calculation of the indicator.

MSXDateTime structure
The date time structure defines a date and time. An array of MSXDateTime structures is
included in the MSXDataRec structure (page 36). For non-intraday data the lTime
member of the structure is set to zero. The section titled “Formats” on page 31 has more
information on the date and time formats.

typedef struct
{
 long lDate;
 long lTime;
} MSXDateTime;

Parameters
There are no parameters for this structure.

MSXDataInfoRec structure
All numeric data used within indicator calculations is stored in an MSXDataInfoRec
structure. This includes price data (Open, High, Low etc.), numeric constants and the
results of all calculations. The section titled “Data Storage and Calculations” on page 56
has more details regarding the use of this structure.

typedef struct
{
 float *pfValue;
 int iFirstValid;
 int iLastValid;
} MSXDataInfoRec;

Parameters

Notes:
• There are cases where a data array may be empty. For example, if a chart contained

no Open Interest data, the MSXDataInfoRec structure for Open Interest data would be
empty. An empty array of data is identified by an iFirstValid value greater than the
iLastValid value. Typically, iFirstValid would be 0 and iLastValid would be -1.

• This occurs on a regular basis during indicator calculations. It is not an error
condition. Your code should be prepared to routinely identify and handle an empty
data array. As a rule, any indicator calculated on an empty data array results in an
empty data array.

pfValue Pointer to an array of float. This array contains all values for a specific set of
data.

iFirstValid Index of the first valid array entry.
iLastValid Index of the last valid array entry.

36 • MetaStock External Functions (MSX) MetaStock®

MSXDataRec structure
The MSXDataRec structure is used by MetaStock to supply security price data to
indicator calculations. All relevant price data for a specific security is contained in this
structure. This structure is automatically supplied to all MSX DLL calculation functions
without the necessity of a specific argument. Please see “Programming Guidelines”
starting on page 56 for more details about the use of this structure.
The MSXDataRec structure contains a pointer to an array of MSXDateTime structures
(page 35), as well as all the following price MSXDataInfoRec structures: Open, High, Low,
Close, Volume, Open Interest, and Indicator (page 35). It is available to all external
functions in an MSX DLL. The “Function Prototype Section” on page 27 has more details.

typedef struct
{
MSXDateTime *psDate;
MSXDataInfoRec sOpen;
MSXDataInfoRec sHigh;
MSXDataInfoRec sLow;
MSXDataInfoRec sClose;
MSXDataInfoRec sVol;
MSXDataInfoRec sOI;
MSXDataInfoRec sInd;

char *pszSecurityName;
char *pszSymbol;
char *pszSecurityPath;
char *pszOnlineSource;
int iPeriod;
int iInterval;
int iStartTime;
int iEndTime;
int iSymbolType;

} MSXDataRec;

Parameters
psDate Pointer to an array of MSXDateTime structures. See page 35.
sOpen The open price MSXDataInfoRec structure. See page 35.
sHigh The high price MSXDataInfoRec structure. See page 35.
sLow The low price MSXDataInfoRec structure. See page 35.
sClose The close price MSXDataInfoRec structure. See page 35.
sVol The volume MSXDataInfoRec structure. See page 35.
sOI The open interest MSXDataInfoRec structure. See page 35.
sInd When an external function is used in a custom indicator, the sInd

structure contains the data the custom indicator was dropped on.
If dropped on a high/low/close bar, equivolume, candlevolume, or
candlestick price plot, the structure contains the closing price.
If dropped on another indicator, the values of that indicator are
contained in the structure.
When an external function is used in a System Test or Exploration, this
sInd structure contains data for the selected plot. The selected plot is
the price or indicator that has been selected with the mouse.
When an external function is used in an Expert, this structure contains
data for the plot selected when the expert was initially attached to the
chart. It does not contain the currently selected plot, as is the case with
system tests and explorations. If your MSX DLL requires the sInd
structure to contain valid data in order to return correct values, it is
important that you clearly instruct users of these requirements.

Note: The sInd structure is identical (from the end user’s perspective) to the
MetaStock Formula Language’s “P” variable discussed in the
MetaStock User's Manual.

MetaStock® MetaStock External Functions (MSX) • 37

pszSecurityName Descriptive name of the security.
pszSymbol Symbol name of the security.
pszSecurityPath Path to the location where the security is stored. This string may be in

UNC format. Under some circumstances this string may be empty. An
empty string should not be treated as an error.

pszOnlineSource Unused – reserved for future use.
iPeriod ‘D’aily, ‘W’eekly, ‘M’onthly, ‘Y’early, ‘Q’uarterly, ‘I’ntraday.

Additional values may be introduced in the future – do not consider
values outside the currently defined set to be an error.

iInterval 0 = tick, other value = minutes compression.
Valid for iPeriod = ‘I’ntraday only, otherwise undefined.

iStartTime Interval start time in 24-hour HHMM format.
Valid for iPeriod = ‘I’ntraday only, otherwise undefined.

iEndTime Interval end time in 24-hour HHMM format.
Valid for iPeriod = ‘I’ntraday only, otherwise undefined.

iSymbolType Unused – reserved for future use.

38 • MetaStock External Functions (MSX) MetaStock®

Function Argument structures
Programmer-defined arguments are passed to the external functions in four argument
arrays: MSXDataInfoRecArgsArray (page 38), MSXNumericArgsArray (page 39),
MSXStringArgsArray (page 39), and MSXCustomArgsArray (page 39). Each of the
arrays is zero-based, and arguments are added to the arrays as they are defined in the
external function argument list from left to right. In other words, if the argument list
contains three MSXNumeric arguments, regardless of how many other arguments of
other types there are in the argument list, the three MSXNumeric arguments will be
found in the first three entries of the MSXNumericArgsArray argument array.
An example will help illustrate the use of the argument arrays. If an external function is
defined with the following parameter list:

MyFunc(DataArray1, Numeric, DataArray2, String, DataArray3,
Custom)

then the function arguments would be found in the following argument array locations:

For more examples, see the Sample DLL Programs chapter starting on page 63,
the installed sample program source code, and the installed program templates
(MSXTmplt.cpp and MSXTmplt.pas).

Notes:
• Each argument array can contain up to MSX_MAXARGS (9) entries, exactly

corresponding to the number of arguments of that type defined for the particular
external function.

• The number of valid entries in each argument array is specified in its iNRecs structure
member. The sum of the iNRecs members of the four argument arrays will equal the
number of arguments defined for the external function.

MSXDataInfoRecArgsArray structure
MSXDataArray (page 33) arguments required by an external function are included in
this array.

typedef struct
{
 MSXDataInfoRec
*psDataInfoRecs[MSX_MAXARGS];

int iNRecs;
} MSXDataInfoRecArgsArray;

Parameters

DataArray1 a_psDataInfoArgs->psDataInfoRecs[0]
Numeric a_psNumericArgs->fNumerics[0]

DataArray2 a_psDataInfoArgs->psDataInfoRecs[1]
String a_psStringArgs->pszStrings[0]

DataArray3 a_psDataInfoArgs->psDataInfoRecs[2]
Custom a_psCustomArgs->iCustomIDs[0]

psDataInfoRecs An array of pointers to MSXDataInfoRecs (page 35).
iNRecs The number of valid entries in the psDataInfoRecs array.

MetaStock® MetaStock External Functions (MSX) • 39

MSXNumericArgsArray structure
Numeric (float) arguments required by an external function are included in this array.

typedef struct
{

float fNumerics[MSX_MAXARGS];
int iNRecs;

} MSXNumericArgsArray;

Parameters

MSXStringArgsArray structure
String arguments required by an external function are included in this array.

typedef struct
{

char *pszStrings[MSX_MAXARGS];
int iNRecs;

} MSXStringArgsArray;

Parameters

MSXCustomArgsArray structure
Custom argument ID’s required by an external function are included in this array.

typedef struct
{

int iCustomIDs[MSX_MAXARGS];
int iNRecs;

} MSXCustomArgsArray;

Parameters

MSXResultRec structure
Data returned from an external calculation function.

typedef struct
{
 MSXDataInfoRec *psResultArray;
 char szExtendedError[MSX_MAXSTRING];
} MSXResultRec;

Parameters

Examples
For examples of sample DLL creation programs in in C, Delphi Pascal, and
PowerBASIC/DLL, see “Sample DLL Programs” on page 63.

fNumerics An array of floats.
iNRecs The number of valid entries in the fNumerics array.

pszStrings An array of pointers to null (zero) terminated character strings.
iNRecs The number of valid entries in the pszStrings array.

iCustomIDs An array of integers containing Custom ID’s.
iNRecs The number of valid entries in the iCustomIDs array.

psResultArray Data array returned from calculation function.
szExtendedError If the external function returns a value of MSX_ERROR, an extended

description of the error can be copied to this string. MetaStock will display
the contents of this string to the user indicating the cause of the error.

40 • MetaStock External Functions (MSX) MetaStock®

Creating an MSX DLL
This section describes how to create an MSX DLL using Microsoft Visual C++,
Borland C++ 4.0, Borland C++ 5.0 Borland Delphi, and PowerBASIC/DLL. Most of
these development environments have considerable flexibility in creating DLLs.
The approach presented here is merely one way to help you get started with your
first DLL.

Note: Microsoft Visual Basic does not have the capability to produce a Win32 DLL.
Therefore, MSX DLLS cannot be written in Microsoft Visual Basic. A good alternative for
VB programmers is PowerBASIC, an inexpensive compiled Basic that is syntax-compatible
with VB and can produce Win32 DLLs.

Microsoft Visual C++ 4.x, 5.0, and 6.0
The MetaStock Developer’s Kit setup installs a new AppWizard called “MetaStock
MSX DLL AppWizard” to the Microsoft Developer’s Studio environment.

To Access the MSX AppWizard:

Stage I For Version 4.x users:
1. Select File> New> Project Workspace.
2. Click Create.

For Version 5.0 and 6.0 users:
1. Select File> New and then click the Projects tab.
2. Highlight MetaStock MSX DLL AppWizard, and select a name and location for the

MSX DLL project.
3. Make sure “Create new workspace” is selected and click OK.

All versions will be presented with the following wizard dialog:

You may wish to use some of the helpful MFC classes, such as CString and the many
container classes. If you choose to create a DLL that uses MFC classes, please follow
these guidelines:
• Do not use any classes within your DLL that are derived from CWnd.
• Your DLL should not have any user interface functionality.

MetaStock® MetaStock External Functions (MSX) • 41

• Equis strongly suggests that you statically link the MFC libraries to your DLL for the
following reasons:

• The MFC DLLs are installed as part of MetaStock, but you cannot be sure that
they will be compatible with your DLL. Statically linking the MFC libraries will
ensure compatibility and eliminate run-time conflicts. The additional overhead of
the static MFC library will be minimal when using the lightweight MFC classes
that are appropriate for use in an MSX DLL.

• Using the MFC DLLs within your MSX DLL (dynamic linking) requires the
correct and consistent use of the AFX_MANAGE_STATE macro in all exported
functions.
Failure to do so may corrupt MetaStock’s use of MFC, resulting in system
lock-ups and data loss.

• A discussion of the AFX_MANAGE_STATE macro is beyond the scope of this
manual. You may research its use in the Visual C++ on-line help.

• Inclusion of the examples and TODO entries in the generated code is
recommended.

Stage II For all versions:
1. Click Finish to create the project.

The newly created project will contain all necessary project files.
Notes:

• The generated files define a user function called “EmptyFunc”.
You should replace “EmptyFunc” with your own function(s).

• When you change the name of “EmptyFunc” in your source file, be sure to also
change the EXPORT name in the DEF file.

Before compiling your project:
Before compiling, make sure the IDE is set to find the header file MSXStruc.h.
You can either copy it from the “…\MDK\MSX\C” install directory to your project
directory, or you can set the IDE via “Tools> Options> Directories” and add the
“…\MDK\MSX\C” install directory to the list of include directories.
If you plan to write more than one MSX DLL it would be best to use the latter approach.

Borland C++ Builder 4.0
Using the Borland C++ Builder Integrated Development Environment (IDE), create a
new DLL project.

To create a new DLL project:
1. Select File> New from the IDE main menu.
2. Click the New tab.
3. Click the Console Wizard icon.
4. On the Console Application Wizard dialog screen:

a. Select DLL under Execution Type.
b. Click Finish.

The IDE will create a new DLL project called “Project1”, and will fill in a
beginning DLL source file called Project1.cpp with a few comments and
some startup code.
Note: If you have been working in the IDE before creating this project, the
project number may be greater than 1.

5. Delete all of the generated code in the Project1.cpp edit window except the line:
“#include <condefs.h>”

6. Select File> Open from the IDE main menu.
7. Select Any file (*.*) under Files of type control.
8. Switch to the “…\MDK\MSX\C” install folder.

42 • MetaStock External Functions (MSX) MetaStock®

9. Select both the MSXTmplt.cpp and MSXTmplt.def files.
Both files can be selected by holding down the Ctrl key while left-clicking on the files.

10. Click Open on the Open dialog.
The two files will appear in the IDE under two new tabs.

11. Select the MSXTmplt.cpp tab.
12. Highlight the entire contents of the MSXTmplt.cpp file in the editor and copy it to the

clipboard by selecting Edit> Copy from the IDE main menu (or pressing CTRL+C).
13. Switch back to the Project1.cpp tab.
14. Position the cursor below the “#include <condefs.h>” line.
15. Select Edit> Paste from the IDE main menu (or press CTRL+V).

The MSXTemplate contents will be pasted into the new project.
16. Switch back to the MSXTmplt.cpp tab and close the edit window by pressing

CTRL+F4.
17. Save the project under the name you will be calling your DLL by selecting

File> Save Project As…
Notes:
• The Save As… dialog will be pointing to the MSX Template folder, so be sure to

create or select a new folder for your project before saving it.
• Be sure to replace the name Project1.bpr with the name you will be calling

your DLL.

After saving your project:
1. Select the MSXTmplt.def tab.
2. Select File> Save As…, and save MSXTmplt.def in your project folder with the

same name you gave your project.
3. Select Project> Add to Project… and select the .def file you just saved in your

project directory.
Notes:
• The IDE will add a line to your .cpp file to include the definition file.

For example, if you named your project Foo, the foo.cpp file will now contain
the line “USEDEF(“Foo.def”);”. At this point you may edit the .cpp and
.def files to implement your own functions.

• The template files define a user function called “EmptyFunc”.
You should replace “EmptyFunc” with your own function.

• When you change the name of “EmptyFunc” in your source file, be sure to also
change the EXPORT name in the DEF file.

Before compiling your project:
Before compiling your project you must make sure the MSXStruc.h file is available to
your project. You can either copy the file from the …\MDK\MSX\C install directory to
your project directory, or you can instruct the IDE where to search for it.
To do this:
1. Select Project> Options… from the IDE main menu.
2. Select the Directories> Conditionals tab.
3. Add the …MDK/MSX/C install directory to the Include path edit window.

Note: Borland C++ Builder complains about unused arguments in a function. You can suppress the
compiler warning by including the following line above each function declaration:
#pragma argsused.

Look at the provided sample DLLs and printed source code in the next chapter for
specific programming requirements.

MetaStock® MetaStock External Functions (MSX) • 43

Borland C++ 5.0
Using the Borland C++ Integrated Development Environment (IDE), create a new
Dynamic Library project.

To create a new Dynamic Library project:
1. This is done by selecting File> New> Project… from the IDE main menu.

A project definition dialog will be displayed.
2. Specify the project path and name, using the name for your DLL as the project name.
3. Select Dynamic Library (.dll) under Target Type.
4. Select Win32 under Platform, and GUI under Target Model.
5. De-select all check-box options under Frameworks, Controls, and Libraries.
6. Select Static under Libraries.

A window will open showing three files: <projectname>.cpp,
<projectname>.def, and <projectname>.rc. These files do not yet exist.

7. Copy MSXTmplt.cpp and MSXTmplt.def from the …\MDK\MSX\C install
directory to your project directory, and rename them to your project name.
(You can do this with Windows Explorer.)
For example, if your project is called “MyFuncs” and is located at C:\MyFuncs,
copy MSXTmplt.cpp and MSXTmplt.def to C:\MyFuncs, and then rename
MSXTmplt.cpp to MyFuncs.cpp, and MSXTmplt.def to MyFuncs.def.

8. At this point you can double click on the filenames in the IDE and edit them.
Notes:
• The template files define a user function called “EmptyFunc”.

You should replace “EmptyFunc” with your own function.
• When you change the name of “EmptyFunc” in your source file, be sure to also

change the EXPORT name in the DEF file.
You are now ready to modify the CPP file to implement your functions.

Before compiling your project:
Before compiling your project you must make sure the MSXStruc.h file is available to
your project. You can either copy the file from the “…\MDK\MSX\C” install directory to
your project directory, or you can instruct the IDE where to search for it.
To do this:
1. Select Options> Project from the IDE main menu.
2. Highlight Directories under Topics.
3. Add the MSX install directory to the Source Directories> Include edit window.

Look at the provided sample DLLs and printed source code in the next chapter for
specific programming requirements.

Borland Delphi 3.0, 4.0, and 5.0
Using the Borland Delphi Integrated Development Environment (IDE), create a new
DLL project.

To create a new DLL project:
1. Select File> New from the IDE main menu.
2. Click the DLL icon.

The IDE will create a new DLL project and will fill in a beginning DLL source file
with a few comments and some startup code.

3. Save the project under the name you will be calling your DLL by selecting
File> Save Project As….

44 • MetaStock External Functions (MSX) MetaStock®

After saving your project:
1. Select File> Open from the IDE main menu.
2. Open the MSXTmplt.pas file, located in the …\MDK\MSX\Delphi install directory.
3. Highlight the entire contents of the MSXTmplt.pas file in the editor and copy it to the

clipboard by selecting Edit> Copy from the IDE main menu (or pressing CTRL+C).
4. Switch back to the tab with your project name, and highlight the default comments

and code that the IDE created.
5. Select Edit> Paste from the IDE main menu (or press CTRL+V) and the MSXTemplate

contents will be pasted into the new project, replacing the code generated by the IDE.
6. Change “DelDll” in the “library DelDll” line to the name of your project.
7. Click the MSXTmplt tab.
8. Right-click anywhere in the text, and select “Close Page” or “Close File”

(depending on the version of Delphi you are using).

Before compiling your project:

Note: In order to compile your DLL you will have to ensure that the MSXStruc.inc file can be
found. You can either copy it from the …\MDK\MSX\Delphi install directory to your
project directory, or you can add the …\MDK\MSX\Delphi directory to the list of files the
Delphi IDE searches when compiling.

To do this:
1. Select Tools> Environment Options from the IDE main menu.
2. Click on the Library tab.
3. Add the MSX\Delphi install directory to the list of directories in the Library Path field.

PowerBASIC/DLL 6.0
1. Copy MSXTmplt.bas from the install folder …\MDK\MSX\PBasic to the folder where

you are going to develop your DLL. (You can do this with Windows Explorer.)
2. Rename your new copy of MSXTmplt.bas to the name you want for your DLL.

For example, if you were creating an MSX DLL called MyFuncs, you would
rename MSXTmplt.bas to MyFuncs.bas.

3. Open the new file in the PowerBASIC IDE and proceed to make your changes.

Before compiling your project:
In order to compile your DLL you will have to ensure that the MSXStruc.bas file can
be found. You can either copy it from the “…\MDK\MSX\PBasic” install directory to
your project directory, or you can add the “…\MDK\MSX\PBasic” directory to the list of
files the PowerBASIC IDE searches when compiling.
1. Select Window> Options….
2. Click the Compiler tab.
3. Type a semicolon at the end of the Paths> Include line.
4. Following the semicolon, enter the complete path to where the MSXStruc.bas file

was installed (…\MDK\MSX\PBasic) .

Note: This operation will only need to be done once, as the path modification will remain until you
change it.

Naming your DLL and Calculation Functions
Because MetaStock loads all MSX DLLs from the same folder, each MSX DLL must
have a unique name. Be sure to give your DLL a descriptive name that is unlikely to
conflict with a DLL name chosen by another developer. Long file names are supported,
but keep in mind that MetaStock users will have to type the entire DLL name along with
the function name to reference your functions.

Note: Function names must be unique only within a given DLL. Choose descriptive names for
each of your functions as a courtesy to the MetaStock users who will be calling them.

MetaStock® MetaStock External Functions (MSX) • 45

Debugging Your MSX DLL
This section describes strategies for debugging MSX DLLs within the Integrated
Development Environment (IDE) for Microsoft Visual C++, Borland C++ Builder 4.0,
Borland C++ 5.0, and Borland Delphi. IDEs not listed here may have similar
capabilities. (Even though the PowerBASIC/DLL IDE does not allow tracing into a
running DLL, suggestions for debugging a PowerBASIC DLL are provided.)

General Approach
The general approach is to attach the debugger to MSXTest.exe, which in turn loads
your MSX DLL. While you cannot trace into MSXTest itself, you can set breakpoints
within your own DLL code to inspect the data structures being passed into and out of
your functions at runtime.
If MSXTest has your MSX DLL loaded, you cannot recompile the DLL until you either
close MSXTest, or point it to a different DLL folder. This is because MSXTest holds an
open handle to all the DLLs it has loaded and the operating system will not permit you to
delete a DLL that is attached to a running process. If you wish to set breakpoints in the
initialization functions of your MSX DLL which has already been loaded by MSXTest,
you can set the breakpoints and then instruct MSXTest to reload the DLLs. For a complete
description of MSXTest read “Testing Your DLL With MSXTest” on page 48.

Microsoft Visual C++ 4.x, 5.0, and 6.0

Stage I Set the Active (Default) Configuration to “Debug” and compile your DLL.
To do this:
For Version 5.0 and 6.0:
1. Select Project> Settings… from the main menu.
2. Select Win32 Debug from the drop-down list on the left.
3. Click the Debug tab on the right.

For Version 4.x:
1. Select “Build> Settings…” from the main menu.
2. Select the “Win32 Debug” version of your project from the list box on the left.
3. Click the Debug tab on the right.
4. Make sure the Category drop-down list is set to General.

You will see a dialog with four entry fields.
a. In the Executable for debug session: field, enter the full path and file name

for MSXTest.exe .
i.e. “C:\Program Files\Equis\MDK\MSX\MSXTest.exe”.

b. Leave the Working Directory field blank.
c. [OPTIONAL] In the Program Arguments: field, enter the full path to the

compiled debug version of your MSX DLL i.e. “C:\MyMSXDLL\Debug”.
Notes:

• Do not supply the name of the MSX DLL, only the path to it.
• Alternatively, you may choose to leave this field blank and tell MSXTest

where to find the debug version of your DLL after MSXTest starts.
d. Leave the Remote executable path and file name: fields blank.
e. Click OK to close the Settings dialog.

46 • MetaStock External Functions (MSX) MetaStock®

Stage II For all versions:
1. Set breakpoints in the source code for your MSX DLL the same as you would to

debug a normal application.
2. Click Go (F5) to launch MSXTest.exe.

Note: You may be presented with a dialog stating that MSXTest does not contain debug
information, and asking if you wish to continue. Click OK to continue.
As MSXTest makes calls to your DLL, the debugger will gain control when any breakpoints
are encountered. You will be able to inspect the contents of any data structures that are
within the scope of your breakpoint.

Borland C++ Builder 4.0
1. Compile your DLL.
2. Select Run> Parameters… from the main menu.
3. In the Host Application field, enter the complete path and filename for MSXTest.exe.

(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).
4. [OPTIONAL] In the Parameters field, enter the full path to the compiled debug

version of your MSX DLL. (Example: C:\MyMSXDLL\).
Notes:

• Do not supply the name of the MSX DLL, only the path to it.
• Alternatively, you may choose to leave this field blank and tell MSXTest

where to find the debug version of your DLL after MSXTest starts.
5. Click OK to close the Run Parameters dialog.
6. Set breakpoints in the source code for your MSX DLL the same as you would to

debug a normal application.
7. When you click Run, MSXTest.exe will load.

As MSXTest makes calls to your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

Borland C++ 5.0
1. Compile your DLL.
2. Select Debug> Load… from the main menu.
3. In the Program name field, enter the complete path and filename for MSXTest.exe.

(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).
4. [OPTIONAL] In the Arguments field, enter the full path to the compiled debug

version of your MSX DLL. (Example: C:\MyMSXDLL\).
Notes:

• Do not supply the name of the MSX DLL, only the path to it.
• Alternatively, you may choose to leave this field blank and tell MSXTest

where to find the debug version of your DLL after MSXTest starts.
5. Click OK to close the Load Program dialog (and start MSXTest.exe running).
6. Set breakpoints in the source code for your MSX DLL the same as you would to

debug a normal application.
As MSXTest makes calls to your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

Borland Delphi 3.0, 4.0, and 5.0
1. Compile your DLL.
2. Select Run> Parameters… from the main menu.
3. Click the Local tab.
4. In the Host Application field, enter the complete path and filename for MSXTest.exe.

(Example: C:\Program Files\Equis\MDK\MSX\MSXTest.exe).

MetaStock® MetaStock External Functions (MSX) • 47

5. [OPTIONAL] In the Parameters field, enter the full path to the compiled debug
version of your MSX DLL. (Example: C:\MyMSXDLL\).
Notes:

• Do not supply the name of the MSX DLL, only the path to it.
• Alternatively, you may choose to leave this field blank and tell MSXTest

where to find the debug version of your DLL after MSXTest starts.
6. Click OK to close the Run Parameters dialog.
7. Set breakpoints in the source code for your MSX DLL the same as you would to

debug a normal application.
8. When you click Run (F9), MSXTest.exe will be launched.

As MSXTest makes calls to your DLL, the debugger will gain control when any
breakpoints are encountered. You will be able to inspect the contents of any data
structures that are within the scope of your breakpoint.

PowerBASIC/DLL 6.0
You cannot trace directly into your PB/DLL code, but you can use the direct approach
of displaying the state of the DLL by popup messages and outputting debug strings.
• Popup messages, via the MSGBOX command, will cause execution of the DLL to

pause until they are acknowledged.
• You can sprinkle calls to the Win32 system call “OutputDebugString” throughout

your DLL without adversely affecting its performance.
• A good debug message view utility such as “DebugView” found at
http://www.sysinternals.com can be used to observe all the debug messages
being displayed by your DLL.

• Be sure to append a line feed character to your output string when using
OutputDebugString, i.e.: OutputDebugString (“Just before initializing
ReturnArray” + CHR$(10))
In either case you can display the values of variables and execution location
information that can help you to track down run-time errors in your code.

When you are finished debugging be sure to delete all the OutputDebugString and
MSGBOX trace commands from your finished source.

48 • MetaStock External Functions (MSX) MetaStock®

Testing Your DLL With MSXTest
MSXTest will load your MSX DLLs and allow you to test the functions using actual data.
You may select from three sets of provided data: end-of-day stock, real-time stock, or end-
of-day futures. Each dataset has from 0 to 1000 datapoints available. You can control
how many datapoints are available for testing your function. An interactive graphical
tree-style display of your functions allows for input of argument values. Results following
the execution of your external function are displayed in a spreadsheet format. You can
print the results, export all results to a CSV (comma delimited) file, or even launch the
application associated with CSV files (normally Microsoft Excel).

IMPORTANT: It is important that you thoroughly test your DLLs using MSXTest before distributing
them to MetaStock users. MSXTest can isolate many potential problems that an
MSX DLL might have.

The first time MSXTest is run, you will be presented with the setup screen shown
below. Click OK to save your selections or Cancel to ignore changes.

Note: Clicking OK will cause the sample data to be re-loaded, but DLLs will not be re-loaded until
Load DLLs is selected from the main menu or toolbar.

The fields on the setup screen are defined as follows:
Sample Data Selection
Select one of three pre-defined data sets. The indicated data arrays will contain data. In all
cases the Indicator data will be filled only if Fill Indicator array with simple moving
average of Close is selected in the Indicator Setup section. You can select from 0 to 1000
data points (time periods). Smaller sets may make hand-checking of your functions easier.
Setting the number of datapoints to 0 will test your DLL for handling empty data arrays.
Indicator Setup
This will fill the Indicator member of the internal MSXDataRec with a simple moving
average of the Close data. You can specify the number of periods in the moving
average and you can terminate the indicator early. This is useful for testing your DLL
on data arrays that may be smaller on both ends than the price data.
MSX DLL Path
This is where MSXTest looks for DLLs to load. If this is the first time MSXTest has
been run this field will be blank and you should type in the path that contains the desired
DLLs. Alternatively, you can use the Browse button to locate the DLL path.

MetaStock® MetaStock External Functions (MSX) • 49

Display DLL load results
MSXTest can display a summary of DLL load results, including any errors that were
encountered. If this option is not checked the load results will be displayed only if there
are errors. Selecting this option will always display the load results, regardless of errors.
Loading DLLs when “Display DLL load results” is selected in the Setup Screen will
produce a window similar to the following:

The DLL path is displayed along with the number of DLLs found, the total number of
functions, and the number of errors encountered while loading the DLLs. If the error
count is non-zero, the specific error will be displayed in the tree view where it occurred,
and the DLL containing the offending function will be marked invalid – its functions
will not be available for testing until the problem is fixed and the DLLs are re-loaded.
The main screen appears as follows:

The tree-view display shows that there were three DLLs loaded from C:\TestDLLs\ ⎯
CSampleDLL, DelphiSampleDLL, and PBSampleDLL. (These DLLs are provided with
complete source code as samples with this toolkit.) The functions contained in each DLL
are displayed including description and name. Beneath each function is a list of the

50 • MetaStock External Functions (MSX) MetaStock®

arguments for that function, including the argument type. Custom types can be further
expanded to show each possible option.
The following menu options are available:

The Toolbar contains shortcut buttons to the following menu options:

When a function or any of its arguments is highlighted in the display tree, the right side
of the main screen displays all the arguments. You can fill them in as you wish and then
click Call External Function. The function will be called with the specified arguments
and the results will be displayed in a window similar to the following:

The incoming arguments are displayed first under Bold Italics. The result array is
always under Bold regular text, and is always labeled “Result”. Following the result
array all non-empty input data from the MSXDataRec is displayed. This consists of
Date and Time, and the following MSXDataInfoRec arrays: Open, High, Low, Close,
Vol, Open Interest, and Indicator.

Menu Option Result
File> Setup Display the setup dialog.
File> Load DLLs Load (or re-load) the DLLs from the path defined in the setup

dialog.
File> Stress Test… Perform comprehensive stress tests on the selected function.

This option is enabled only when a DLL function is selected.
See “Stress Testing Your DLL Functions” on page 52 for
more details.

File> Exit Exit the MSXTest application.
View> Toolbar Toggle display of toolbar.
View> Status Bar Toggle display of status bar.
Help> About MSXTest… Version information for MSXTest and summary of loaded

DLL copyright strings.

Setup

LoadDLLs

About MSXTest

MetaStock® MetaStock External Functions (MSX) • 51

The following menu options allow further manipulation of the result data:

Notes:
• All the spreadsheet menu functions are available by right-clicking the mouse

anywhere on the spreadsheet grid.
• The Format Date/Time checkbox will cause the Date and Time columns to be

formatted as MM/DD/YYYY and MM:SS:TTT rather than YYYYMMDD and
MMSSTTT respectively.

Menu Option Result
File> Open
(CTRL+O)

Saves the spreadsheet to a temporary CSV (comma delimited) file, and
launches the application associated by Windows with CSV files
(normally Microsoft Excel).

File> Save As
(CTRL+S)

Saves the data to a CSV (comma delimited) file. The CSV file format is
easily imported into most Windows spreadsheet programs. The CSV
extension is normally associated by Windows with Microsoft Excel.

File> Print
(CTRL+P)

This option will bring up the following window to control which
portions of the spreadsheet are to be sent to the default printer:

Edit> Copy
(CTRL+C)

This option will copy the selected cells to the Windows clipboard.
Select cells by clicking with the left mouse and dragging or by clicking
any row or column header.

Edit> Copy All
(CTRL+A)

This option will copy the entire spreadsheet to the Windows clipboard.

52 • MetaStock External Functions (MSX) MetaStock®

Stress Testing Your DLL Functions
The DLL Stress Test involves calling your DLL function thousands of times with many
variations in the data arguments. Three types of tests are performed: Max/Min Data
Array Tests, Special Case Data Array Tests, and Argument Range Tests.

Note: Most of these conditions should not occur in practice. The stress tests ensure that your DLL
can handle extreme conditions without crashing or causing a run-time exception.

Max/Min data array tests
Max/Min data array tests consist of calling your DLL function with all possible
combinations of the following data array setups:

Special Case data array tests
Special case data array tests consist of calling your DLL function with the following
data array setups:

Setup Result
Empty All data arrays are empty.
Max Data arrays are either empty or filled with the maximum float value

(FLT_MAX).
Min Data arrays are either empty or filled with the minimum float value

(FLT_MIN).
NegMax Data arrays are either empty or filled with the negative maximum

float value.
NegMin Data arrays are either empty or filled with the negative minimum

float value.
Zeros Data arrays are either empty or filled with zeroes (0.0).
Alternating Data arrays are either empty or filled with the following repeating

sequence: FLT_MAX, -FLT_MAX, FLT_MIN, -FLT_MIN, 0.0.

Setup Result
One Element Each data array is set with iFirstValid equal to iLastValid.
Illegal First/Last iFirstValid is less than zero and iLastValid is greater than 0.
Unusual Empty iLastValid is less than iFirstValid indicating empty, but they are

set to unusual values rather than iFirstValid = 0, iLastValid = -1.
Close GT High The values in the Close price array are greater than the values in the

High data array.
Close LT Low The values in the Close price array are less than the values in the

Low data array.
Y2K The date field in the DateTime structure contains all dates greater

than 20000101.
Y2K Transition The date field in the DateTime structure crosses over from dates in

1999 to 2000.
Invalid Dates Invalid month and day components in the date field.
No Date The date array is zero-filled.
Date Gaps Occasional sequences of zero in the date array.
Date Sequence Dates in date array suddenly jump back in time.
Invalid Times Hour and minute components of time array are illegal.
Time w/o Date The time array contains valid data, but the date array is zero-filled.
Random Ticks The ticks component of the time field is set to random non-

contiguous values.
Repeating High Ticks The ticks component of the time field is incremented to 999, then

several entries repeat at 999 before the rest of the time changes and
the tick field is reset.

MetaStock® MetaStock External Functions (MSX) • 53

Argument range tests
Argument range tests call your function with each of the built-in data sets, and the
function arguments set as follows:

Running a Stress Test
When you highlight a function, then select “File> Stress Test…” from the main menu
you will be presented with a dialog box similar to the following:

Click Start to begin the Stress Test.
• A progress bar will indicate test activity, but is not representative of the total number

of tests to be performed. The bar may be fully displayed from one to five times
depending on the number of arguments defined for the function. There will be a great
deal of disk activity during the test.

• At the conclusion of the Stress Test a text file will be displayed with the test results.
Any function calls that produce a run-time exception or return a value of
MSX_ERROR will be logged in the file.

• If the error is a fatal-type error, such as illegal memory writes or stack overflow, the
test will be prematurely terminated.

• Min/Max data array test results will include a string indicating which data arrays
contain data and which are empty. For example, the string “O, , ,C,V, ,”
contains data in the Open, Close and Volume data arrays.

• Normally, the Stress Tests are performed with 1000 data points. This allows rapid
testing for initial results or re-testing DLL modifications. Be sure to run the Stress
Tests with the “Use Large Data Arrays” check box selected at least once before
releasing your DLL. This option uses data arrays with 65500 data points. Large data
arrays significantly slow the stress test, but will help to reveal floating point
overflows and underflows that may be missed by the normal test.

• The results from all Stress Tests are stored in a folder named “Stress” located
immediately below the folder containing MSXTest.exe. The result file name consists
of the DLL name, Function Name, and “Stress.Txt”. For example, the results for
ColdFront.MyMov would be found in the file “ColdFront.MyMov.Stress.Txt”.

CAUTION: Each time a stress test is run for a given function, the previous results for that
function will be overwritten.

Setup Result
Numeric fields These are set from 999999999999.00 to -999999999999.00.

The value is modified toward 0.0 by 20% on each call.
String fields These are called with empty strings, large strings containing all

typeable characters, and a string of blanks.
Custom fields These are set to all legal values defined by the function,

INT_MIN, and INT_MAX.

54 • MetaStock External Functions (MSX) MetaStock®

Considerations for making sure your functions pass the stress test:
• Your function should never produce a math exception, such as overflow, underflow,

or division by zero. In practice, your function should not receive values that would
cause overflow or underflow conditions to occur, but because your function may
receive as input the output of another external function you must be prepared to
handle extreme values. The supplied template files, MSXTmplt.cpp, MSXTmplt.pas,
and MSXTmplt.bas, contain a function that forces the passed value to lie within the
minimum and maximum values for a single precision floating point number. If you
perform your floating point calculations using doubles (double precision floating
point), and then force the results into the required range, you can avoid most overflow
and underflow conditions. See the sample DLLs for examples of using this approach.

• Test the value of the divisor before any mathematical division to avoid division by
zero exceptions.

• Test all arguments for valid ranges. Return MSX_ERROR in the cases where a
clearly defined argument type is out of bounds (such as an out-of-range Custom ID).

• Make sure you never access a data array with a negative index.
• Be careful about returning the MSX_ERROR result from your external functions.

When MetaStock encounters that return type it will display an extended error
message in a dialog box that will require user response. Report only errors that are
significant problems the user needs to know about – not just exceptional situations
your DLL wasn’t equipped to handle.

Automating MSXTest From Your IDE
If the compiler IDE you are using supports user-defined tools you may find it useful to
define MSXTest in the tool list. Using the specific IDE tool macros, specify the target
directory of the project as a command line argument for MSXTest. When MSXTest
starts up, it checks its command line arguments for a directory. If one is found, it sets
that directory as the location to search for MSX DLLs.
For example, using Microsoft Visual C++ 6.0, you could define MSXTest as a tool by
selecting “Tools> Customize” from the main menu. Select the “Tools” tab, and click
the “New” icon. Enter MSXTest and press Enter. Fill in the Command field with the
full path to where you installed MSXTest
(e.g. C:\Program Files\Equis\MDK\MSX\MSXTest.exe). Fill in the “Arguments”
field with “$(TargetDir)”, and leave the “Initial Directory” field blank.
Click “Close”. Now when you select “Tools” from the main menu, you will see
“MSXTest” as an entry. Most other compiler IDEs have similar capabilities.
Refer to your IDE documentation for specifics.

MetaStock® MetaStock External Functions (MSX) • 55

Testing Your DLL With MetaStock

CAUTION: Be sure you have fully tested your DLL with the MSXTest program before loading it
with MetaStock.
To test your MSX DLL with MetaStock, copy it to the “External Function DLLs” folder
located below the folder defined for Custom Indicators, System Tests, and Explorations.
If the “External Function DLLs” folder does not already exist, you must first create it.
(The default location is “C:\Program Files\Equis\MetaStock\External
Function DLLs”.)

Note: If you are replacing an MSX DLL that already exists in the “External Function DLLs” folder
you must first shut down MetaStock. Because MetaStock loads all available MSX DLLs at
startup, they cannot be deleted or replaced until MetaStock shuts down and releases the
DLLs.

Perform at least the following minimum tests:
• Verify that the correct text appears in the Paste Functions dialog and that the parser is

correctly compiling the syntax for all external functions. This includes the display of
meaningful error messages when a syntax error is detected in the use of an external
function.

• Use Indicator Builder to write a sample indicator that calls a function in your DLL.
• Plot the indicator and check the values. Make sure that calculation results are

correctly displayed in charts.
• Edit the plot via right-click.
• Repeat for each function in the DLL.

56 • MetaStock External Functions (MSX) MetaStock®

Programming Guidelines
This section discusses guidelines, limits and other considerations when creating MSX
external functions. All examples in this section use “C” syntax. The syntax for Delphi
Pascal and PowerBASIC is similar. See the source listings in the “Sample DLL
Programs” chapter and included example programs for specific syntax requirements.

Data Storage and Calculations

Data Arrays
All numeric data used within indicator calculations is stored in structures known as
data arrays. Data arrays are used to store price data (e.g., Open, High, Low, etc.),
numeric constants, and the results of an indicator calculation. When MetaStock
supplies security price data and numeric argument data to an MSX DLL function, data
arrays are used. When an MSX DLL calculation function returns the results of an
indicator to MetaStock, the result is returned in a data array.
Data array structures are implemented in the MSXDataInfoRec structure defined on
page 35, and have three basic components:
• Data elements.
• First valid index.
• Last valid index.
The data elements are the actual numeric values associated with the data array. These
values are stored in an array of floating point values. The first valid index and last valid
index are used to define which data elements contain valid data. All data elements
between the first valid index and the last valid index (inclusive) contain valid data. All
elements outside of this range have undefined values and should be ignored for all
calculations.
A data array is considered “empty” if the first valid index is greater than the last valid
index. Empty data arrays are not uncommon and must be handled properly. Typically,
an empty data array will have a first valid of 0 and a last valid of -1, although any
combination of a first valid greater than a last valid should be considered empty. Empty
data arrays occur when data is not available. For example, an Open Interest data array
used for a security that does not have Open Interest. Likewise, the result of a 100-
period moving average applied to a security price data array that contains only 90 data
elements would be an empty data array.
First and last valid indexes are very important during indicator calculations.
Calculations should always be restricted to data elements contained within the first
valid/last valid range. Care must be taken to make sure that a data array produced from
the result of a calculation has the correct first valid/last valid settings.
Two important concepts must be understood to correctly set the first valid and last valid
indexes for the returned data array:
• Always restrict calculations to the union of the valid data ranges of all input data

arrays used.
• The first valid and last valid values of a calculation result must maintain their position

relative to the values of all input data arrays.
The following example will help to illustrate these concepts.
Assume that an MSX DLL implements a function that adds three data arrays together
and then calculates a three period moving average of the sum. The following statistics
apply to the three data arrays supplied as input to the function:

Data Array 1:First Valid = 1, Last Valid = 10
Data Array 2:First Valid = 3, Last Valid = 10
Data Array 3:First Valid = 1, Last Valid = 7

MetaStock® MetaStock External Functions (MSX) • 57

The data arrays could be visualized as follows:

If the MSX DLL implements the calculations in two steps, the first step would involve
the adding of the three data arrays to produce a temporary result array. In this case, the
calculation result data array would look like this:
Result Array: First Valid = 3 Last Valid = 7

Notice how the resulting array has first and last valid set to the union of all three of the
input data arrays. Also note how each element of the result array maintains its position
relative to the data elements used to calculate the result (the sum of all #3 data elements is
stored in the #3 element of the resulting array). This is a very important concept and must
be used in the calculation of all indicators in an MSX DLL. By correctly setting the first
and last valid indexes, you will allow MetaStock to correctly determine where the
indicator plot should start and end in relation to the data used for input into the indicator.
If the MSX DLL applies the three-period moving average to the result array above, the
final result would look like this:
Final Result: First Valid = 5 Last Valid = 7

Notice that the final array has the first valid set to 5. This is because the 3-period
moving average does not come up to speed until the third element of the data on which

Record Data Array 1 Data Array 2 Data Array 3
1 3 1
2 2 1
3 2 2 2
4 3 2 2
5 2 3 3
6 1 2 2
7 1 2 1
8 2 2
9 3 1
10 2 1

Record Result Array
1
2
3 6
4 7
5 8
6 5
7 4
8
9
10

Record Final Result Array
1
2
3
4
5 7
6 6.67
7 5.67
8
9
10

58 • MetaStock External Functions (MSX) MetaStock®

it is applied. Since the input array had a first valid of 3, the 3-period moving average
did not come up to speed until the fifth data element. Again, the last valid value is set
to 7 because the input data array had a last valid of 7.

Security Price Data
When MetaStock calls a calculation function in an MSX DLL, it automatically gives the
DLL access to security price data. The DLL does not have to explicitly declare an
argument in the external function for access to the security data. This means that even if
an external function has no arguments, the calculation functions in the DLL will still be
given security price and detail data to work with.

MSX DLL calculation
function

• An MSX DLL calculation function has no way of knowing which type of formula
(e.g., Custom Indicator, System Test, etc.) is calling the external function. The external
function calculation process only knows that it is given a set of data arrays that define
the price data for the target security. The external calculation function simply performs
the appropriate calculations and returns the resulting data array to MetaStock.

MSXDataRec structure • MetaStock uses the MSXDataRec structure (page 36) to supply security price and
detail data to an MSX DLL.

• In the case of an external function used in an Indicator, the MSXDataRec structure
will contain the price and detail data for the base security of the chart where the custom
indicator is being calculated.

• For System Tests, the structure is loaded with base security data for the active
chart when the system test was launched.

• For Explorations, the structure is loaded with security data for the security
currently being explored.

• For Experts, the structure is loaded with the base security data for the chart
where the expert is attached.

• The MSXDataRec structure contains seven data arrays stored in MSXDataInfoRec
structures (page 35). These data arrays store all relevant price data for the security.
Some of these arrays may be empty (see the discussion of empty data arrays in the
MSXDataInfoRec section (page 35) if the security does not have data for that price field.

• Also contained in the MSXDataRec structure is a pointer to an array of MSXDateTime
structures. This array contains date and time information for each data point. If a
calculation function needs to access the date and time for the Nth bar of the security,
it would reference the Nth element of the psDate array. Note that this is not a data
array like the sHigh, sLow, etc.

sInd data array • The data array sInd contains data for a user-selected indicator. In the case of a Custom
Indicator this data array will contain the value for the chart object on which the indicator
was dropped. For System Tests and Explorations, this array contains the selected plot
(if there is one) of the active chart when the system Test or Exploration was started. For
Experts, this array contains the selected plot (if there is one) of the chart when the
Expert was attached. In all cases, if no plot is selected the sInd data array will be empty.

• Notice that the location of the data in these arrays is synchronized. The Nth element
of each array corresponds to the same time frame.

sClose data array • The sClose data array always contains the maximum data points. All other data
arrays will contain equal to or less than the value of sClose.iLastValid.

iFirstValid, iLastValid
settings

• The iFirstValid and iLastValid settings in the sClose data array are significant.
Typically the number of data elements in this data array defines the maximum
number of data elements stored in the other price arrays. This is important for
determining the number of valid elements contained in the psDate array. For
example, if the sClose.iFirstValid field contains 100 and the sClose.iLastValid field
contains 200, you can be certain that the psDate array contains valid data at
psDate[100] through psDate[200].

Note: After a calculation is performed, the a_psResultRec->psResultArray’s iLastValid should
never be greater than the iLastValid value of the sClose data array.

MetaStock® MetaStock External Functions (MSX) • 59

• The iFirstValid and iLastValid of sClose should be used to determine how much
storage is available for all data arrays. All arrays have enough memory allocated to
store up to sClose.iLastValid data points. Data returned in a_psResultRec->
psResultArray from an MSX DLL must keep within these same storage constraints.

Note: The a_psResultRec->psResultArray data array returned from an MSX DLL must never
have an iFirstValid that is less than sClose.iFirstValid. The a_psResultRec->
psResultArray data array returned from an MSX DLL must never have an iLastValid that is
greater than sClose.iLastValid.

Things to Remember
• Calculation functions must never modify any incoming arguments, with the exception

of the result record (a_psResultRec). Incoming arguments are defined as ‘const’,
where possible, in the provided templates to help ensure that no illegal modifications
take place.

• Be sure to set a_psResultRec->psResultArray->iFirstValid and
a_psResultRec->psResultArray->iLastValid in the returned MSXResultRec before
returning from your function.

• If your function is returning MSX_ERROR indicating an internal error, be sure to
copy an extended string message describing the cause of the error to
a_psResultRec->pszExtendedError.
Make sure your message string does not exceed MSX_MAXSTRING bytes.

• Never set a_psResultRec->psResultArray->iFirstValid less than sClose.iFirstValid.
• Never set a_psResultRec->psResultArray->iLastValid greater than

sClose.iLastValid. Writing to a_psResultRec->psResultArray->pfValue beyond the
value of sClose.iLastValid will corrupt MetaStock’s heap.

• Be sure to check the iFirstValid and iLastValid of any MSXDataInfoRec arguments or
a_psDataRec members you intend to use. Never assume that data will be available in
any data array. If data is not available for your function to process, set
a_psResultRec->psResultArray->iFirstValid to 0 and a_psResultRec->
psResultArray->iLastValid to –1 to indicate that there is no valid data in the returning
array. This method allows processing to continue in the most robust way possible.

User Interface Restrictions
While an MSX DLL calculation function is active, all other formula processing in
MetaStock is suspended. For this reason, an MSX DLL must NOT, under any
circumstances, request user input through message boxes or dialogs. This includes the
reporting of error conditions.
Users routinely leave MetaStock running for extended periods unattended.
MSX DLLs cannot assume that a user is available to respond to a message of any kind.
MSX DLLs must refrain from implementing any user interface.

60 • MetaStock External Functions (MSX) MetaStock®

Tech Note 1 – Using MSFL in an MSX DLL
If you use MSFL calls from your MSX DLL, there are a few issues you must consider.
• MetaStock loads and initializes the release version of the MSFL DLL at startup. If your

MSX DLL is also using the release version of MSFL, it must not call MSFL1_Initialize
(page 115). MSFL’s initialization routine should be called only once during the lifetime of
an application. If your MSX DLL calls MSFL1_Shutdown (page 124), then
MSFL1_Initialize, the MSFL operations that MetaStock is performing will be corrupted.
Again, this is only if your MSX DLL is using the release version of the MSFL DLL.

• If your MSX DLL uses the debug version of the MSFL DLL that was shipped with the
MDK, you will need to call MSFL1_Initialize once from within your MSX DLL, and
you will also need to call MSFL1_Shutdown when your MSX DLL is unloaded.

• The recommended approach is to make your MSX DLL respond correctly under both
conditions by calling MSFL1_GetMSFLState (page 107) to determine if the MSFL DLL
your MSX DLL uses is already loaded and initialized.
If MSFL1_GetMSFLState returns MSFL_STATE_INITIALIZED, your MSX DLL is
using the same MSFL DLL as MetaStock. If MSFL1_GetMSFLState returns
MSFL_STATE_UNINITALIZED, your MSX DLL is using a different version of the
MSFL DLL, and it must be initialized via a call to MSFL1_Initialize. If this is the case, set
a flag in your MSX DLL code that can be checked during the DLLMain’s
DLL_PROCESS_DETACH logic that will indicate that MSFL1_Shutdown is required.

Note: The MSFL1_GetMSFLState logic cannot be performed during the DLLMain
DLL_PROCESS_ATTACH, as MetaStock loads all MSX DLLs before it initializes the
MSFL DLL. If your MSX DLL initializes the release version of MSFL before MetaStock gets a
chance to, MetaStock will fail to load. Make the check from somewhere inside one of your
exported user functions, setting a flag to ensure that the Initialize call is not made more than once.

• If you plan to distribute your MSX DLL (containing MSFL logic) to other MetaStock
users:

• Other MetaStock users must have the same version of the MSFL DLL that your
MSX DLL is expecting to use. It is essential that your MSX DLL references the
release build of MSFL if your MSX DLL will be executed by another MetaStock
user. The debug version of MSFL DLL will (almost certainly) not be present on
their system.

• Realize that this approach may require a new version of your MSX DLL for each
new version of MSFL that may be released in the future. For example, as of this
writing, the current version of MSFL is MSFL72.DLL. If a future version of
MetaStock is shipped with MSFL73.DLL, your MSX DLL will not find the
MSFL72.DLL it expects, and will fail to load.

• The recommended approach is to update your MSX DLL with each release of a
new version of MSFL. This approach will ensure that your MSX DLL is tested with
each new release, and that it will not attempt to load an untested version of the
MSFL DLL.

• An alternative approach is to dynamically load the MSFL library via the
“LoadLibrary” system call, and then resolve each MSFL function you use via the
“GetProcAddress” system call. This will allow you to make a minimal change to your
MSX DLL to maintain compatibility with future MSFL releases. Attempt to load the
most recent MSFL DLL first. If that fails, attempt to load the next most recent, etc.
Your DLL must have a method of obtaining the current MSFL DLL name. You can
hard-code the names of all the potential MSFL DLLs that may be present, retrieve the
names from an external file that you can provide or document for your user to
maintain, or search the windows system folder for “MSFL*.DLL” files. Searching for
the file name in the system folder carries the potential risk of eventually encountering
a future version of the MSFL DLL that is incompatible with older MetaStock files.
In that case, your MSX DLL would fail to load or to operate correctly.

61 • MetaStock External Functions (MSX) MetaStock®

MSX Index

A
Argument range tests 53

B
Borland C++ 5.0

Creating an MSX DLL 43
Debugging an MSX DLL 46

Borland C++ Builder 4.0
Creating an MSX DLL 41
Debugging an MSX DLL 46

Borland Delphi Pascal
Creating an MSX DLL 43
Debugging an MSX DLL 46

C
C

Creating an MSX DLL 40, 41, 43
Debugging an MSX DLL 45, 46

Calculation Functions 30
Calculation Structures 35

MSXDataInfoRec 35
MSXDataRec 36
MSXDateTime 35

custom strings, and partial matches 34

D
Data

Data Array 56
Price Data 58
Sample 48
Types 31

data array
Argument range 53
tests

Max/Min 52
Special Case 52

Data Types 31
Dates 31
Strings 31
Times 31

distributing your MSX DLL 60

E
ExtFml 26, 32, 34

F
Function Argument Structures 38

MSXCustomArgsArray 39
MSXDataInfoRecArgsArray 38
MSXNumericArgsArray 39
MSXResultRec 39
MSXStringArgsArray 39

H
Help 26

I
iFirstValid 30, 35

defined 35
iFirstValid setting 58
iLastValid 30, 35

defined 35
iLastValid setting 58
iLastValue indexes 30
Initialization Functions 27

MSXInfo 27
MSXNthArg 28
MSXNthCustomString 29
MSXNthFunction 28

Initialization Structures 32
MSXDLLDef 32
MSXFuncArgDef 33
MSXFuncCustomString 34
MSXFuncDef 32

L
lTime 35

M
Max/Min data array tests 52
MetaStock External Function (MSX) defined 25
Microsoft Visual C++

Creating an MSX DLL 40
Debugging an MSX DLL 45

MSFL, using in an MSX DLL 60
MSX DLL, distributing 60
MSX_ERROR 39
MSX_MAXARGS 33, 38
MSX_MAXSTRING 32
MSX_MAXSTRING, defined 31
MSX_VERSION 32
MSXCustom 34
MSXCustomArgsArray structure 39
MSXDataInfoRec 36
MSXDataInfoRec structure 35
MSXDataInfoRecArgsArray structure 38
MSXDataRec 35
MSXDataRec structure 58

described 36
MSXDateTime 35, 36
MSXDLLDef structure 27
MSXFuncArgDef data structure 29
MSXFuncCustomString data structure 29
MSXFuncDef data structure 28

62 • MetaStock External Functions (MSX) MetaStock®

MSXNthCustomString 34
MSXNumeric arguments 38
MSXNumericArgsArray argument array 38
MSXNumericArgsArray structure 39
MSXResultRec structure 39
MSXStringArgsArray structure 39
MSXStruc.bas 32
MSXStruc.pas 32

P
partial match on custom strings 34
PowerBASIC

Creating an MSX DLL 44
Debugging an MSX DLL 47

Programming Considerations
UI Restrictions 59

S
sClose data array 58
sInd structure 36
Special Case data array tests 52
strings, and partial matches 34

T
Tech Notes

Using MSFL in an MSX DLL 60
Technical support 26
Testing

MSXTest 48
Stress Testing 52
Testing your DLL with MetaStock 55

V
Variable Notation 31
Visual Basic 25

W
Win32 43
Win32 DLL 25

MetaStock® Sample DLL Programs • 63

Sample DLL Programs

The following three programs demonstrate complete source code for implementing a
moving average in C, Delphi Pascal, and PowerBASIC/DLL.

“C” Example
//==
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "MSXStruc.h"

// we don't want C++ name-mangling
#ifdef __cplusplus
extern "C" {
#endif

//---

BOOL __stdcall MSXInfo (MSXDLLDef *a_psDLLDef)
{
 // copy in your copyright information...
 strncpy (a_psDLLDef->szCopyright, "Copyright (c) ColdFront Logic, Inc., 2000",

sizeof (a_psDLLDef->szCopyright)-1);
 a_psDLLDef->iNFuncs = 1; // One calculation function;
 a_psDLLDef->iVersion = MSX_VERSION;
 return MSX_SUCCESS;
}

//---

BOOL __stdcall MSXNthFunction (int a_iNthFunc, MSXFuncDef *a_psFuncDef)
{
 BOOL l_bRtrn = MSX_SUCCESS;

 switch (a_iNthFunc)
 {
 case 0: // a_iNthFunc is zero-based
 strcpy (a_psFuncDef->szFunctionName, "MyMov");
 strcpy (a_psFuncDef->szFunctionDescription, "My Moving Average");
 a_psFuncDef->iNArguments = 3; // 3 arguments: data array, periods, method
 break;
 default:
 l_bRtrn = MSX_ERROR;
 break;
 }
 return l_bRtrn;
}

//---

BOOL __stdcall MSXNthArg (int a_iNthFunc, int a_iNthArg,
 MSXFuncArgDef *a_psFuncArgDef)
{
 BOOL l_bRtrn = MSX_SUCCESS;
 a_psFuncArgDef->iNCustomStrings = 0;

 switch (a_iNthFunc)
 {
 case 0:
 switch (a_iNthArg)
 {

64 • Sample DLL Programs MetaStock®

 case 0:
 a_psFuncArgDef->iArgType = MSXDataArray; // data array
 strcpy (a_psFuncArgDef->szArgName, "DataArray");
 break;
 case 1:
 a_psFuncArgDef->iArgType = MSXNumeric; // Numeric
 strcpy (a_psFuncArgDef->szArgName, "Period");
 break;
 case 2:
 a_psFuncArgDef->iArgType = MSXCustom; // CustomType
 a_psFuncArgDef->iNCustomStrings = 4;
 strcpy (a_psFuncArgDef->szArgName, "Method");
 break;
 default:
 l_bRtrn = MSX_ERROR;
 break;
 }
 break;
 default:
 l_bRtrn = MSX_ERROR;
 break;
 }
 return l_bRtrn;
}
//---
BOOL __stdcall MSXNthCustomString (int a_iNthFunc, int a_iNthArg,
 int a_iNthString,
 MSXFuncCustomString *a_psCustomString)
{
 BOOL l_bRtrn = MSX_SUCCESS;

 typedef struct
 {
 char *szString;
 int iID;
 } LocalStringElement;

 LocalStringElement l_sTheStrings[] =
 {
 {"Simple", 0}, {"S", 0},
 {"Weighted",1}, {"W", 1}
 };

 switch (a_iNthFunc)
 {
 case 0:
 switch (a_iNthArg)
 {
 case 2:
 if(a_iNthString >= 0 && a_iNthString < NMyMovCustStrings)
 {
 strncpy (a_psCustomString->szString,

l_sTheStrings[a_iNthString].szString,
 MSX_MAXSTRING-1);
 a_psCustomString->iID = l_sTheStrings[a_iNthString].iID;
 }
 break;
 default:
 l_bRtrn = MSX_ERROR;
 break;
 }
 break;
 default:
 l_bRtrn = MSX_ERROR;
 break;
 }
 return l_bRtrn;
}

// ***
// This local utility function is used to help ensure that no overflows
// or underflows will occur during calculations. The MSXTest program
// Stress Test function will call your DLL with a wide range of values,
// including positive and negative values of FLT_MAX and FLT_MIN.
// Perform all intermediate calculations using doubles and then force the

MetaStock® Sample DLL Programs • 65

// results into the range of a float.
// ***
#define MSXMax(a,b) (((a) > (b)) ? (a) : (b))
#define MSXMin(a,b) (((a) < (b)) ? (a) : (b))
double ForceFloatRange (double a_lfDbl)
{
 if (a_lfDbl > 0.0)
 {
 a_lfDbl = MSXMin (a_lfDbl, double(FLT_MAX)); // force pos num <= FLT_MAX
 a_lfDbl = MSXMax (a_lfDbl, double(FLT_MIN)); // force pos num >= FLT_MIN
 }
 else
 {
 if (a_lfDbl < 0.0)
 {
 a_lfDbl = MSXMax (a_lfDbl, double(-FLT_MAX)); // force neg num >= -FLT_MAX
 a_lfDbl = MSXMin (a_lfDbl, double(-FLT_MIN)); // force neg num <= -FLT_MIN
 }
 }
 return a_lfDbl;
}

//--
// This is an example of a local function used for calculations. This
// one calculates a moving average on the source data array, and puts
// the results in the result array. It differentiates its processing
// based on whether the moving average is to be weighted or not.
//--
void MovingAverage (const MSXDataInfoRec *a_psSrc, MSXDataInfoRec *a_psRslt,
 int a_iPeriod, BOOL a_bIsWeighted)
{
 int l_iIndex = a_psSrc->iFirstValid;
 int l_iMaxIndex = a_psSrc->iLastValid;
 double l_lfSum = 0.0;
 double l_lfDivisor;
 int i;

 if (a_bIsWeighted)
 // sum of the digits formula
 l_lfDivisor = double(a_iPeriod) * (double(a_iPeriod)+1.0) / 2.0;
 else
 l_lfDivisor = double(a_iPeriod);
 while ((l_iIndex + a_iPeriod - 1) <= l_iMaxIndex)
 {
 l_lfSum = 0.0;
 for (i=0; i<a_iPeriod; i++) {
 if (a_bIsWeighted)
 l_lfSum += a_psSrc->pfValue[l_iIndex+i] * (i + 1.0); // weighted
 else
 l_lfSum += a_psSrc->pfValue[l_iIndex+i]; // simple
 l_lfSum = ForceFloatRange (l_lfSum);
 }
 a_psRslt->pfValue[l_iIndex + a_iPeriod - 1] =
 float (ForceFloatRange(l_lfSum / l_lfDivisor));
 l_iIndex++;
 }
 a_psRslt->iFirstValid = a_psSrc->iFirstValid + a_iPeriod - 1;
 a_psRslt->iLastValid = l_iMaxIndex;
}

//---
// The following function demonstrates use of three argument types:
// MSXDataArray, MSXNumeric and MSXCustom.
// A MovingAverage is calculated on the input DataArray for input Periods.
// Two moving average methods are available, specified by the Custom ID.
//---

BOOL __stdcall MyMov (const MSXDataRec *a_psDataRec,
 const MSXDataInfoRecArgsArray *a_psDataInfoArgs,
 const MSXNumericArgsArray *a_psNumericArgs,
 const MSXStringArgsArray *a_psStringArgs,
 const MSXCustomArgsArray *a_psCustomArgs,
 MSXResultRec *a_psResultRec)
{

66 • Sample DLL Programs MetaStock®

 BOOL l_bRtrn = MSX_SUCCESS;
 // We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom, in that order
 // The arguments will be found at:
 // DataArray: a_psDataInfoArgs[0]
 // Numeric : a_psNumericArgs->fNumerics[0];
 // Custom : a_psCustomArgs->iCustomIDs[0];
 const MSXDataInfoRec *l_psData;
 int l_iPeriod;
 int l_iMethod;
 int l_iIndex;
 int l_iMaxIndex;

 if (a_psDataInfoArgs->iNRecs == 1 &&
 a_psNumericArgs->iNRecs == 1 &&
 a_psCustomArgs->iNRecs == 1)
 {
 l_psData = a_psDataInfoArgs->psDataInfoRecs[0];
 l_iPeriod = int(a_psNumericArgs->fNumerics[0]); // truncate
 l_iMethod = a_psCustomArgs->iCustomIDs[0];
 l_iIndex = l_psData->iFirstValid;
 l_iMaxIndex = l_psData->iLastValid;

 if (l_iPeriod > 0 && (l_iIndex + l_iPeriod - 1) <= l_iMaxIndex)
 {
 switch (l_iMethod)
 {
 case 0: // Simple
 case 1: // Weighted
 MovingAverage (l_psData, a_psResultRec->psResultArray, l_iPeriod, l_iMethod);
 break;
 default:
 strncpy (a_psResultRec->szExtendedError, “Invalid method”,
 sizeof(a_psResultRec->szExtendedError)-1);
 a_psResultRec->psResultArray->iFirstValid = 0;
 a_psResultRec->psResultArray->iLastValid = -1;
 l_bRtrn = MSX_ERROR;
 break;
 }
 }
 else
 {
 a_psResultRec->psResultArray->iFirstValid = 0;
 a_psResultRec->psResultArray->iLastValid = -1;
 }
 }
 return l_bRtrn;
}

#ifdef __cplusplus
}
#endif

//===
This is the DEF file (ColdFront.DEF) for the above example:

LIBRARY
DESCRIPTION ‘MSX External Functions.’
EXPORTS
 MSXInfo
 MSXNthFunction
 MSXNthArg
 MSXNthCustomString
 MyMov

MetaStock® Sample DLL Programs • 67

Delphi Pascal Example
library DelphiSampleDLL; // Causes a .DLL file to be built
Uses SysUtils, // Brings in szString funcs and exception trapping
 Math; // Brings in various math functions
{$I MSXStruc.inc} // Include the MSX datastructure definitions

function MSXInfo (var a_psDLLDef: MSXDLLDef): LongBool; stdcall;
begin
 StrLCopy (a_psDLLDef.szCopyright, 'Copyright (c) FantasticFuncs, 2000',
 MSX_MAXSTRING-1);
 a_psDLLDef.iNFuncs := 1;
 a_psDLLDef.iVersion := MSX_VERSION;
 MSXInfo := MSX_SUCCESS;
end;

function MSXNthFunction (a_iNthFunc: Integer;
 var a_psFuncDef: MSXFuncDef): LongBool; stdcall;
 var l_bRtrn : LongBool;
begin
 l_bRtrn := MSX_SUCCESS;
 case a_iNthFunc of
 0: begin
 StrCopy(a_psFuncDef.szFunctionName, 'MyMov');
 StrCopy(a_psFuncDef.szFunctionDescription, 'My Moving Average');
 a_psFuncDef.iNArguments := 3; // 3 arguments: data array, periods, method
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 MSXNthFunction := l_bRtrn;
end;

function MSXNthArg(a_iNthFunc: Integer; a_iNthArg: Integer;
 var a_psFuncArgDef: MSXFuncArgDef): LongBool; stdcall;
 var l_bRtrn : LongBool;
begin
 l_bRtrn := MSX_SUCCESS;
 case a_iNthFunc of
 0:
 case a_iNthArg of
 0: begin
 a_psFuncArgDef.iArgType := MSXDataArray;
 StrCopy(a_psFuncArgDef.szArgName, 'DataArray');
 end;
 1: begin
 a_psFuncArgDef.iArgType := MSXNumeric;
 StrCopy(a_psFuncArgDef.szArgName, 'Period');
 end;
 2: begin
 a_psFuncArgDef.iArgType := MSXCustom;
 StrCopy(a_psFuncArgDef.szArgName, 'Method');
 a_psFuncArgDef.iNCustomStrings := 4;
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 MSXNthArg := l_bRtrn;
end;

function MSXNthCustomString(a_iNthFunc: Integer;
 a_iNthArg: Integer;
 a_iNthString: Integer;
 var a_psCustomString: MSXFuncCustomString):LongBool;

stdcall;
 var l_bRtrn : LongBool;
begin
 l_bRtrn := MSX_SUCCESS;

 case a_iNthFunc of
 0:

68 • Sample DLL Programs MetaStock®

 case a_iNthArg of
 2:
 // see MSXTmplt.pas to see an alternative to the nested
 // switch used below
 case a_iNthString of
 0: begin
 StrCopy(a_psCustomString.szString, 'Simple');
 a_psCustomString.iID := 0;
 end;
 1: begin
 StrCopy(a_psCustomString.szString, 'S');
 a_psCustomString.iID := 0;
 end;
 2: begin
 StrCopy(a_psCustomString.szString, 'Weighted');
 a_psCustomString.iID := 1;
 end;
 3: begin
 StrCopy(a_psCustomString.szString, 'W');
 a_psCustomString.iID := 1;
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 else
 l_bRtrn := MSX_ERROR;
 end;
 MSXNthCustomString := l_bRtrn;
end;

// ***
// This local utility function is used to help ensure that no overflows
// or underflows will occur during calculations. The MSXTest program
// Stress Test function will call your DLL with a wide range of values,
// including positive and negative values of MaxSingle and MinSingle.
// Perform all intermediate calculations using Doubles and then force the
// results into the range of a Single.
// ***

function ForceSingleRange (a_lfDbl:Double) : Double;
begin
 if (a_lfDbl > 0.0) then
 begin
 if (a_lfDbl > MaxSingle) then
 a_lfDbl := MaxSingle
 else
 if (a_lfDbl < MinSingle) then
 a_lfDbl := MinSingle;
 end
 else
 if (a_lfDbl < 0.0) then
 begin
 if (a_lfDbl < -MaxSingle) then
 a_lfDbl := -MaxSingle
 else
 if (a_lfDbl > -MinSingle) then
 a_lfDbl := -MinSingle;
 end;
 ForceSingleRange := a_lfDbl;
end;

//***
// This is an example of a local procedure used for calculations. This one
// calculates a simple moving average on the source data array, and puts the
// results in the result array.
// **

procedure SimpleMovingAverage (const a_psSrc: PMSXDataInfoRec;
 var a_psResult: MSXDataInfoRec;

MetaStock® Sample DLL Programs • 69

 a_iPeriod : Integer);
 var l_iIndex : Integer;
 l_iMaxIndex: Integer;
 l_lfSum : Double;
 i : Integer;
begin
 l_iIndex := a_psSrc.iFirstValid;
 l_iMaxIndex := a_psSrc.iLastValid;
 l_lfSum := 0.0;

 for i:= 0 to a_iPeriod-1 do
 l_lfSum := ForceSingleRange(l_lfSum + a_psSrc.pfValue[l_iIndex+i]);
 l_lfSum := ForceSingleRange (l_lfSum);
 l_iIndex := l_iIndex + a_iPeriod - 1;
 while l_iIndex <= l_iMaxIndex do
 begin
 a_psResult.pfValue[l_iIndex] := ForceSingleRange(l_lfSum / a_iPeriod);
 l_iIndex := l_iIndex + 1;
 l_lfSum := l_lfSum - a_psSrc.pfValue[l_iIndex-a_iPeriod];
 if l_iIndex <= l_iMaxIndex then
 l_lfSum := ForceSingleRange(l_lfSum + a_psSrc.pfValue[l_iIndex]);
 end;
 a_psResult.iFirstValid := a_psSrc.iFirstValid + (a_iPeriod - 1);
 a_psResult.iLastValid := l_iMaxIndex;
end;

//**
// This is an example of a local procedure used for calculations. This one
// calculates a weighted moving average on the source data array, and puts the
// results in the result array.
//***
procedure WeightedMovingAverage (const a_psSrc: PMSXDataInfoRec;
 var a_psResult: MSXDataInfoRec;
 a_iPeriod : Integer);
 var l_iIndex : Integer;
 l_iMaxIndex: Integer;
 l_lfSum : Double;
 l_lfDivisor: Double;
 i : Integer;
begin
 l_iIndex := a_psSrc.iFirstValid;
 l_iMaxIndex := a_psSrc.iLastValid;
 // Sum of Digits formula
 l_lfDivisor := ForceSingleRange(a_iPeriod * (a_iPeriod+1.0) / 2.0);

 while ((l_iIndex + a_iPeriod - 1) <= l_iMaxIndex) do
 begin
 l_lfSum := 0.0;
 for i := 0 to a_iPeriod-1 do
 l_lfSum := ForceSingleRange(l_lfSum + a_psSrc.pfValue[l_iIndex+i] *
 (i + 1.0));
 a_psResult.pfValue[l_iIndex + a_iPeriod - 1] :=
 ForceSingleRange(l_lfSum / l_lfDivisor);
 l_iIndex := l_iIndex + 1;
 end;
 a_psResult.iFirstValid := a_psSrc.iFirstValid + a_iPeriod - 1;
 a_psResult.iLastValid := l_iMaxIndex;
end;

// --
// The following function demonstrates the use of three argument types:
// MSXDataArray, MSXNumeric and MSXCustom.
// A Moving Average is calculated on the input DataArray for input Periods.
// Two moving average methods are available, specified the the Custom ID.
// --

function MyMov (const a_psDataRec: PMSXDataRec;
 const a_psDataInfoArgs: PMSXDataInfoRecArgsArray;
 const a_psNumericArgs: PMSXNumericArgsArray;
 const a_psStringArgs: PMSXStringArgsArray;
 const a_psCustomArgs: PMSXCustomArgsArray;
 var a_psResultRec: MSXResultRec): LongBool; stdcall;

 var l_bRtrn : LongBool;

70 • Sample DLL Programs MetaStock®

 l_psData : PMSXDataInfoRec;
 l_iPeriod : Integer;
 l_iMethod : Integer;
 l_iIndex : Integer;
 l_iMaxIndex: Integer;
 l_sTmpRec : MSXDataInfoRec;
begin
 // We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom.
 // The arguments will be found at:
 // DataArray: a_psDataInfoArgs->psDataInfoRecs[0]
 // Numeric : a_psNumericArgs->fNumerics[0]
 // Custom : a_psCustomArgs->iCustomIDs[0]
 if ((a_psDataInfoArgs.iNRecs = 1) and
 (a_psNumericArgs.iNRecs = 1) and
 (a_psCustomArgs.iNRecs = 1)) then
 begin
 l_bRtrn := MSX_SUCCESS;
 l_psData := a_psDataInfoArgs.psDataInfoRecs[0];
 l_iPeriod := Trunc (a_psNumericArgs.fNumerics[0]);
 l_iMethod := a_psCustomArgs.iCustomIDs[0];
 l_iIndex := l_psData.iFirstValid;
 l_iMaxIndex := l_psData.iLastValid;

 if (l_iPeriod > 0) and ((l_iIndex + l_iPeriod - 1) <= l_iMaxIndex) then
 case l_iMethod of
 0: SimpleMovingAverage (l_psData, a_psResultRec.psResultArray^,
 l_iPeriod);
 2: WeightedMovingAverage (l_psData, a_psResultRec.psResultArray^,
 l_iPeriod);
 else
 begin
 StrLCopy(a_psResultRec->szExtendedError, ‘Invalid method’,
 MSX_MAXSTRING-1);
 l_bRtrn := MSX_ERROR;
 end
 end
 else
 begin
 a_psResultRec.psResultArray.iFirstValid := 1;
 a_psResultRec.psResultArray.iLastValid := 0;
 end
 end
 else // wrong number of arguments passed!
 begin
 StrLCopy (a_psResultRec.szExtendedError,
 'Incorrect number of arguments',
 MSX_MAXSTRING-1);
 l_bRtrn := MSX_ERROR;
 end;

 if (l_bRtrn <> MSX_SUCCESS) then
 begin
 a_psResultRec.psResultArray.iFirstValid := 0;
 a_psResultRec.psResultArray.iLastValid := -1;
 end;

 MyMov := l_bRtrn;
end;

exports
 MSXInfo,
 MSXNthFunction,
 MSXNthArg,
 MSXNthCustomString,
 MyMov;

begin

end.

MetaStock® Sample DLL Programs • 71

PowerBASIC/DLL Example
#COMPILE DLL ' create a dll
OPTION EXPLICIT ' require all variables to be declared
#INCLUDE "WIN32API.INC" ' required equates and windows prototypes
#INCLUDE "MSXStruc.BAS" ' MSX Data Structures

FUNCTION MSXInfo SDECL ALIAS "MSXInfo" (a_psDLLDef AS MSXDLLDef PTR) _
 EXPORT AS LONG
 ' copy in your copyright information...
 @a_psDLLDef.szCopyright = "Copyright (c) PBDemo Inc., 2000"
 ' Set the number of functions we are exporting
 @a_psDLLDef.iNFuncs = 1 ' One calculation function
 @a_psDLLDef.iVersion = %MSX_VERSION
 MSXInfo = %MSX_SUCCESS
END FUNCTION

FUNCTION MSXNthFunction SDECL ALIAS "MSXNthFunction" (_
 BYVAL a_iNthFunc AS LONG, _

a_psFuncDef AS MSXFuncDef PTR) EXPORT AS LONG

 MSXNthFunction = %MSX_SUCCESS

 SELECT CASE a_iNthFunc
 CASE 0 ' a_iNthFunc is zero-based
 @a_psFuncDef.szFunctionName = "MyMov"
 @a_psFuncDef.szFunctionDescription = "My Moving Average"
 ' 3 arguments: data array, periods, method
 @a_psFuncDef.iNArguments = 3
 CASE ELSE
 MSXNthFunction = %MSX_ERROR
 END SELECT
END FUNCTION

FUNCTION MSXNthArg SDECL ALIAS "MSXNthArg" (_
 BYVAL a_iNthFunc AS LONG, _
 BYVAL a_iNthArg AS LONG, _

a_psFuncArgDef AS MSXFuncArgDef PTR) EXPORT AS LONG

 MSXNthArg = %MSX_SUCCESS

 @a_psFuncArgDef.iNCustomStrings = 0

 SELECT CASE a_iNthFunc
 CASE 0
 SELECT CASE a_iNthArg
 CASE 0
 @a_psFuncArgDef.iArgType = %MSXDataArray ' DataArray;
 @a_psFuncArgDef.szArgName = "DataArray"
 CASE 1
 @a_psFuncArgDef.iArgType = %MSXNumeric ' Numeric
 @a_psFuncArgDef.szArgName = "Period"
 CASE 2
 @a_psFuncArgDef.iArgType = %MSXCustom ' CustomType
 @a_psFuncArgDef.iNCustomStrings = 4
 @a_psFuncArgDef.szArgName = "Method"
 CASE ELSE
 MSXNthArg = %MSX_ERROR
 END SELECT
 CASE ELSE
 MSXNthArg = %MSX_ERROR
 END SELECT
END FUNCTION

FUNCTION MSXNthCustomString SDECL ALIAS "MSXNthCustomString" (_
 BYVAL a_iNthFunc AS LONG, _
 BYVAL a_iNthArg AS LONG, _
 BYVAL a_iNthString AS LONG, _

a_psCustomString AS MSXFuncCustomString PTR) EXPORT AS LONG

 MSXNthCustomString = %MSX_SUCCESS
 @a_psCustomString.szString = ""
 @a_psCustomString.iID = -1

72 • Sample DLL Programs MetaStock®

 SELECT CASE a_iNthFunc
 CASE 0
 SELECT CASE a_iNthArg
 CASE 2
 SELECT CASE a_iNthString
 CASE 0
 @a_psCustomString.szString = "Simple"
 @a_psCustomString.iID = 0
 CASE 1
 @a_psCustomString.szString = "S"
 @a_psCustomString.iID = 0
 CASE 2
 @a_psCustomString.szString = "Weighted"
 @a_psCustomString.iID = 1
 CASE 3
 @a_psCustomString.szString = "W"
 @a_psCustomString.iID = 1
 CASE ELSE
 MSXNthCustomString = %MSX_ERROR
 END SELECT
 CASE ELSE
 MSXNthCustomString = %MSX_ERROR
 END SELECT
 CASE ELSE
 MSXNthCustomString = %MSX_ERROR
 END SELECT
END FUNCTION

' ***
' This local utility function is used to help ensure that no overflows
' or underflows will occur during calculations. The MSXTest program
' Stress Test function will call your DLL with a wide range of values,
' including positive and negative values of FLT_MAX AND FLT_MIN.
' Perform all intermediate calculations using doubles and then force the
' results into the range of a single.
' ***

FUNCTION ForceFloatRange (BYVAL a_lfDbl AS DOUBLE) AS DOUBLE
 LOCAL s_MaxSingle AS DOUBLE
 LOCAL s_MinSingle AS DOUBLE
 s_MaxSingle = 3.371E+38
 s_MinSingle = 8.431E-37

 IF a_lfDbl > 0.0 THEN
' force pos num <= s_MaxSingle
a_lfDbl = MIN (a_lfDbl, s_MaxSingle)
' force pos num >= s_MinSingle
 a_lfDbl = MAX (a_lfDbl, s_MinSingle)
 ELSE
 IF a_lfDbl < 0.0 THEN

 ' force neg num >= -s_MaxSingle
 a_lfDbl = MAX (a_lfDbl, -s_MaxSingle)
 ' force neg num <= -s_MinSingle
 a_lfDbl = MIN (a_lfDbl, -s_MinSingle)
 END IF
 END IF
 ForceFloatRange = a_lfDbl
END FUNCTION

'--
' This is an example of a local function used for calculations. This
' one calculates a moving average on the source data array, and puts
' the results in the result array. It differentiates its processing
' based on whether the moving average is to be weighted or not.
'--
SUB MovingAverage (a_psSrc AS MSXDataInfoRec PTR, _
 a_psRslt AS MSXDataInfoRec PTR, _
 BYVAL a_iPeriod AS LONG, _
 BYVAL a_bIsWeighted AS LONG)
 LOCAL l_iIndex AS LONG
 LOCAL l_iMaxIndex AS LONG
 LOCAL l_lfSum AS DOUBLE

MetaStock® Sample DLL Programs • 73

 LOCAL l_lfDbl AS DOUBLE
 LOCAL l_fDivisor AS DOUBLE
 LOCAL i AS INTEGER

 l_iIndex = @a_psSrc.iFirstValid
 l_iMaxIndex = @a_psSrc.iLastValid
 l_lfSum = 0.0

 IF a_bIsWeighted = %TRUE THEN
 ' sum of the digits formula
 l_fDivisor = CDBL(a_iPeriod) * (CDBL(a_iPeriod)+1.0) / 2.0
 ELSE
 l_fDivisor = CDBL(a_iPeriod)
 END IF
 l_fDivisor = CSNG(ForceFloatRange (l_fDivisor))
 IF l_fDivisor = 0.0 THEN
 l_fDivisor = 1.0
 END IF
 WHILE ((l_iIndex + a_iPeriod - 1) <= l_iMaxIndex)
 l_lfSum = 0.0
 FOR i = 0 TO a_iPeriod-1
 IF a_bIsWeighted = %TRUE THEN

 ' weighted
 l_lfSum = l_lfSum + @a_psSrc.@pfValue[l_iIndex+i] * (i + 1.0)
 ELSE

 ' simple
 l_lfSum = l_lfSum + @a_psSrc.@pfValue[l_iIndex+i]
 END IF
 NEXT i

 l_lfSum = ForceFloatRange(l_lfSum)
 l_lfDbl = ForceFloatRange(l_lfSum / l_fDivisor)
 @a_psRslt.@pfValue[l_iIndex + a_iPeriod - 1] = CSNG(l_lfDbl)
 l_iIndex = l_iIndex + 1
 WEND
 @a_psRslt.iFirstValid = @a_psSrc.iFirstValid + a_iPeriod - 1
 @a_psRslt.iLastValid = l_iMaxIndex
END SUB

'--
' The following function demonstrates use of three argument types:
' MSXDataArray, MSXNumeric and MSXCustom.
' A MovingAverage is calculated on the input DataArray for input Periods.
' Three moving average methods are available, specified by the Custom ID.
'--
FUNCTION MyMov SDECL ALIAS "MyMov" (_
 a_psDataRec AS MSXDataRec PTR, _
 a_psDataInfoArgs AS MSXDataInfoRecArgsArray PTR, _
 a_psNumericArgs AS MSXNumericArgsArray PTR, _
 a_psStringArgs AS MSXStringArgsArray PTR, _
 a_psCustomArgs AS MSXCustomArgsArray PTR, _
 a_psResultRec AS MSXResultRec PTR) EXPORT AS LONG
LOCAL l_bRtrn AS LONG

 ' We expect 3 arguments, 1 DataArray, 1 Numeric and 1 Custom, in that order
 ' The arguments will be found at:
 ' DataArray: @a_psDataInfoArgs.psDataInfoRecs(0)
 ' Numeric : @a_psNumericArgs.fNumerics(0);
 ' Custom : @a_psCustomArgs.iCustomIDs(0);

 LOCAL l_psData AS MSXDataInfoRec PTR
 LOCAL l_iPeriod AS LONG
 LOCAL l_iMethod AS LONG
 LOCAL l_iIndex AS LONG
 LOCAL l_iMaxIndex AS LONG

 l_bRtrn = %MSX_SUCCESS

 IF (@a_psDataInfoArgs.iNRecs = 1 AND _
 @a_psNumericArgs.iNRecs = 1 AND _
 @a_psCustomArgs.iNRecs = 1) THEN
 l_psData = @a_psDataInfoArgs.psDataInfoRecs(0)
 ' truncate any fractional period
 l_iPeriod = FIX(@a_psNumericArgs.fNumerics(0))
 l_iMethod = @a_psCustomArgs.iCustomIDs(0)

74 • Sample DLL Programs MetaStock®

 l_iIndex = @l_psData.iFirstValid
 l_iMaxIndex = @l_psData.iLastValid

 IF (l_iPeriod > 0 AND (l_iIndex + l_iPeriod - 1) <= l_iMaxIndex) THEN
 SELECT CASE l_iMethod
 CASE 0 ' Simple
 CALL MovingAverage (@l_psData, @a_psResultRec.@psResultArray, _
 l_iPeriod, %FALSE)
 CASE 1 ' Weighted
 CALL MovingAverage (@l_psData, @a_psResultRec.@psResultArray, _
 l_iPeriod, %TRUE)
 CASE ELSE
 ' Somehow we got called with an invalid argument
 @a_psResultRec.szExtendedError = "Undefined method argument"
 l_bRtrn = %MSX_ERROR ' report this AS an ERROR
 END SELECT
 ELSE
 @a_psResultRec.@psResultArray.iFirstValid = 0
 @a_psResultRec.@psResultArray.iLastValid = -1
 END IF
 ELSE ' wrong number of arguments!
 @a_psResultRec.szExtendedError = "Wrong number of arguments"
 l_bRtrn = %MSX_ERROR
 END IF

 IF (l_bRtrn <> %MSX_SUCCESS) THEN ' only for serious errors...
 @a_psResultRec.@psResultArray.iFirstValid = 0
 @a_psResultRec.@psResultArray.iLastValid = -1
 END IF

 MyMov = l_bRtrn
END FUNCTION

References
See the following included source files for data structure definitions and additional
examples: MSXStruc.h, MSXTmplt.cpp, CSampleDLL.c, MSXStruc.inc,
MSXTmplt.pas, DelphiSampleDLL.pas, MSXStruc.bas, MSXTmplt.bas, and
PBSampleDLL.bas.

MetaStock® MetaStock File Library (MSFL) • 75

MetaStock File Library (MSFL)

Introduction
The MetaStock File Library (MSFL) Application Programming Interface (API)
provides developers with the tools necessary to integrate applications with the
MetaStock data format. The MSFL API provides support for reading security names
and price data.
This manual contains the function descriptions and instructions necessary to access
MetaStock data files using the MSFL. It assumes that the user is an experienced
programmer familiar with security price data and calling dynamic link library (DLL)
functions. The primary function of the MSFL is to remove many of the complexities of
accessing MetaStock data files from the application program through a set of easy-to-use
functions.

What’s New
The 9.0 version of the MSFL has only minor changes. The PowerBasic sample app for
the MSFL and MSX uses the latest version (i.e. version 7.03).
See the section titled “Change Record” on page 137 for details of all other changes.

Application Integration
Using the MSFL DLL in your application is different for each development
environment. Common to all development platforms is the need for Windows to locate
and load the MSFL DLL. The MSFL DLL, in order of preference, should be copied to
the Windows system directory, application directory, or other directory in the search
path.

Note: The version of the MSFL DLL should be checked before overwriting an existing copy.
Refer to the GetFileVersionInfo function in the Win32™ SDK.

Below are basic instructions for several of the most common development
environments. Refer to the development documentation for specifics on using it with
third-party DLL’s.

C/C++
The following steps must be taken to create a C/C++ application that uses the MSFL
DLL.
1. Set the include path for the msfl.h header file. Refer to the compiler documentation

for the specifics of setting an include path.
2. Add the link library to the project.

Link libraries for Microsoft Visual C++ 6.0 and Borland C++ Builder 4 are
provided. Refer to the compiler documentation for the specifics of adding a library
to the project.

3. If you are using a different compiler or the link libraries provided are incompatible
with the compiler version you are using, you should be able to build the link
libraries using the definition file (i.e. msfl.def) and the tools provided with the
compiler. For example, Visual C++ uses LIB with the /DEF switch, while Borland
C++ Builder uses the IMPLIB utility program.

76 • MetaStock File Library (MSFL) MetaStock®

Visual Basic
The following points should be observed to create a Visual Basic application that uses
the MSFL DLL.
1. Add the msfl.bas module to the project, it can be found in the msfl/include

folder. The msfl.bas module contains the MSFL function and type declares.
2. Take care when using DLL procedures.

Microsoft Visual Basic cannot verify that you are passing correct values to the
MSFL DLL procedures. If you pass incorrect values, the procedure may fail, which
may cause your application to shut down. This doesn't cause permanent harm to
your application, but may cause data corruption and require the user to reload and
restart the application.

3. Be sure to check the return values of MSFL functions to test for errors or messages.
A convenient error testing function is provided in the msflutil.bas module, which
also resides in the msfl/include folder.

4. Special attention must be taken when dealing with string data.
Like the Windows API, the MSFL uses null-terminated strings. These strings differ
from those used in Visual Basic. In addition, variable- and fixed-length strings differ in
Visual Basic; for example, comparing a fixed-length string containing “ABC” may not
equal a variable-length string containing the exact same text.
The msflutil.bas module, which resides in the msfl/include folder, provides
two convenient string conversion functions.

• NullTerminate(strNullMe As String) As String
NullTerminate null-terminates a variable or fixed length string.
All fixed-length strings must be null-terminated before calling any of the
MSFL functions.

• Extract(strFixed As String, strJunk As String) As String
Extract returns a variable-length string containing the legitimate portion of a
string. Pass a string to the strJunk parameter which contains the illegitimate
character, typically either a space or null (i.e. Chr(0)). Extract should be used
on all strings returned from the MSFL.

Delphi
The following steps must be taken to create a Delphi form that uses the MSFL DLL.
1. Add the msfl.pas unit to the project; it can be found in the msfl/include folder.

The msfl.pas unit contains the MSFL constant, record and function declarations.
2. Add the MSFL unit to the form’s uses clause.

PowerBASIC
The following points should be observed to create a PowerBASIC application that uses
the MSFL DLL.
1. Ensure that the msfl.inc module is included in any file of your project that makes

MSFL calls. The msfl.inc module can be found in the msfl/include folder.
The msfl.inc module contains the MSFL function and type declares.

2. Be sure to check the return values of MSFL functions to test for errors or messages.
A convenient error testing function is provided in the msfl.inc module.

MetaStock® MetaStock File Library (MSFL) • 77

Getting Help
Due to the complexity of the programming languages and development environments,
Equis International is only able to provide minimal technical support for the MetaStock
File Library (MSFL). We will help in understanding how to use the MSFL, but we
cannot aid in writing or debugging your application.
This manual explains the use of the MSFL, but not the programming techniques
required to effectively use it. Equis International provides this library as a tool to access
MetaStock data, but how it is used is up to you.

CAUTION: Some functions in the MSFL can cause loss of the user’s data if used improperly or
inappropriately. Equis International shall not be responsible for any damages of any
type caused by application programs that use the MSFL.
See “Getting Help” on page 4 for more information on obtaining Technical Support for
the MetaStock Developer’s Kit.
The sample applications included on the CD-ROM can also be a good source of
information as well as an excellent starting point.

Overview
The MSFL was developed to provide multi-user and networking support as well as limit
the amount of information that an application program is required to know about the
actual storage of MetaStock data. An application program calls the MSFL functions to
read and write both security and price data. All file handles and other low-level
considerations are handled by the MSFL. However, the application program is
responsible for ensuring that directories opened on removable media are closed before
the media is removed from the drive.
MSFL Function Levels
MSFL functions are organized into two levels.
• Level 1 functions (prefixed by “MSFL1_”) are the basic I/O functions needed to

access MetaStock data files.
• Level 2 functions (prefixed by “MSFL2_”) provide support for common tasks that

require multiple Level 1 function calls. Using Level 2 functions is recommended over
multiple calls to Level 1 functions because of their ease of use and increased
efficiency.

Securities
The term “security” is used throughout this manual to refer to stocks, bonds, mutual
funds, commodities, currencies, futures, indices, options, etc. The MetaStock format
does not differentiate between any of the above types of securities. Each MetaStock
directory can contain from 0 to 6,000 securities.

Price Data
Each security has from 0 to 65,500 price records associated with it. In terms of a
relational database, there is a one-to-many relationship between the securities and their
associated price records. Each price record contains the security price for the period
(e.g. tick, day, week, etc.) denoted by the time/date. The fields in the price record
largely depend on the security type.

78 • MetaStock File Library (MSFL) MetaStock®

Composites
Composites are simulated securities composed of two securities. The price data is
calculated from the two securities that make up the composite. The first security of the
composite is known as the “primary security,” and the second is known as the
“secondary security.” Price data can only be calculated for the common records
between the primary and secondary securities.
Except for a few restrictions, the application program can use composite securities like
standard securities. The MSFL manages the matching and calculation of the simulated
price data.
Because composites price records are calculated rather than being stored on disk, there
are no record numbers associated with composite price records. Any functions that
require a record number cannot be used with composite securities. In addition, any
functions that return record numbers will always return a zero for a composite’s record
number.
If the application attempts to call a function that cannot be used with composite securities,
the MSFL function will return an MSFL_ERR_SECURITY_IS_A_COMPOSITE error.

Multi-user Support
To provide multi-user support, the MSFL implements two types of locking, directory
and security. Directory locking is internal to the MSFL. Security locking is initiated by
the application program via MSFL function calls.

Directory
When the MSFL requires exclusive access to one or more of the files in a directory, the
directory is often locked, restricting access to other users. In most cases, the MSFL
internal retry period will shield the application from noticing this situation. However, if
the directory remains locked, an MSFL_ERR_DIR_IS_BUSY error is returned.

Security
Security locking allows the application to gain access to securities and their price data.
Multiple users are permitted to “prevent write” (read) lock a security, but only one user
is permitted to write or full lock a security at any given time.
Because of the multi-processing nature of Microsoft Windows, even single-user
applications should guard against multiple applications and/or users accessing the same
data. Thus, the MSFL requires even single-user applications to lock and unlock securities.
For detailed information on locking securities, see the “Security Locking” section in
Using The Library (page 86).

MetaStock® MetaStock File Library (MSFL) • 79

Reserved File Names
The MetaStock file format reserves several file names for storing price data and security
information. In addition, the MSFL also uses several temporary files. To avoid conflict
and possible data loss, the application program should not use the file names listed.

CD-ROM Support
The MSFL is able to read MetaStock data directly from a CD-ROM drive and other
read-only media. The multi-user MSFL files (~MSFL*.*) are created in the directory
specified by the GetTempPath Windows API call. A maximum of 4,095 sets of MSFL
files can exist in the temporary directory at any given time.

Data Types
The MSFL uses several data types to retrieve and return information to the application
program. These data types are consistent throughout the library. The specifics of each
field are documented in the Structures section (page 81) of this manual.

Formats
This section is an overview of the different field types and not the specific fields.

Dates
Dates are of type long and are stored in a year, month, day format with the year being a
four digit year (e.g. 15 January 1997 is stored in a long as 19970115). Valid dates range
from 1 January 1800 to 31 December 2200.

Times
Times are of type long and are stored in hour, minutes, tick order (e.g. 10:03:002 is
stored in a long as 1003002). Times are always in twenty-four hour format. Notice that
the last segment of the time is not seconds, but ticks. The tick count is used instead of
seconds to handle the case of multiple ticks per minute without duplication of records.
The first tick of a minute is 000, the second is 001, and so on, up to 999. Valid times
range from 00:00:000 to 23:59:999.

File Name File Type
~MSFL.INX MSFL security index
~MSFL.LCK MSFL security lock information
~MSFL.SEC MSFL security information
~MSFL.USR MSFL user information
~NONMSFL.USR Non-MSFL user information
MASTER Security information
EMASTER Security information
XMASTER Security information
F*.DAT Price data
F*.MWD Price data
F*.DOP Price data format
F*.TMP MSFL temporary price data
SRT*.TMP MSFL temporary sort file
C*.MWS MetaStock Smart Chart
*.MWC MetaStock chart
*.MWT MetaStock template
*.MWL MetaStock layout

80 • MetaStock File Library (MSFL) MetaStock®

Price Data Items
Price data items (e.g. open, close, volume, etc.) are of type float and stored in the IEEE
floating point format.

Symbols
Symbols are of type char and are stored as null-terminated strings. The symbol contains
the ticker symbol for the security. Symbols are case sensitive, so the application is
responsible for case conversions. Only characters above ASCII 31 are allowed, and all
symbols should be stripped of trailing spaces. The symbol must also be left-justified in
the string (that is, no leading characters or spaces). The maximum length of a symbol is
defined by MSFL_MAX_SYMBOL_LENGTH.

Note: The maximum symbol length does not include the terminating null; it is the maximum length
of the symbol itself.

Data Field Combinations
MetaStock price data can consist of eight different fields (date, time, high, low, open, close,
volume, and open interest). These fields are grouped logically together in several
combinations (e.g. date, time, close, and volume). Like a database of personal information,
it wouldn’t make much sense if it only contained the street address, state, and zip code.
To be meaningful, the database would also need the name, city, and perhaps a phone
number. Likewise, there are only certain combinations of the eight fields in MetaStock
price data that make sense.
The MSFL will only work with specific combinations of data fields. Even though each
bit in the wDataAvailable field can be set separately, there are a limited number of valid
combinations. The basic rules are:
• There must be four or more fields used.
• There can be no more than eight fields used.
• The fields, except for the time, must be used in the same order as they appear in the

Field Combinations table (below). The Time field is used only for intraday securities.
Several combinations are possible based on the rules and will work with the MSFL;
however, the entries in the following table are the only data field combinations
supported by MetaStock. The table is organized with the data fields and their
mnemonics running horizontally and the valid field combinations running vertically.
For example, the first column in the Valid Field Combinations represents an intraday
four-field combination. The checkmarks indicate that the fields for this combination are
date, time, close and volume.

The wDataAvailable or field combinations are created by bitwise OR-ing the
mnemonics
(e.g. MSFL_DATA_DATE | MSFL_DATA_CLOSE | MSFL_DATA_VOLUME |
MSFL_DATA_HIGH).

Fields Mnemonic for Bits Field Combinations
Date MSFL_DATA_DATE ! ! ! ! ! ! !
Time MSFL_DATA_TIME ! ! ! !
Close MSFL_DATA_CLOSE ! ! ! ! ! ! !
Volume MSFL_DATA_VOLUME ! ! ! ! ! ! !
High MSFL_DATA_HIGH ! ! ! ! ! !
Low MSFL_DATA_LOW ! ! ! ! ! !
Open MSFL_DATA_OPEN ! ! ! !
Open Interest MSFL_DATA_OPENINT ! !

MetaStock® MetaStock File Library (MSFL) • 81

Types
The MSFL uses several defined data types. Except for the MSFL specific data type
below, the data types are exactly the same as those in the Microsoft Windows Software
Development Kit.
HSECURITY is a 32-bit value used as a handle to a security. The security handle
uniquely identifies any security. Security handles are not persistent; that is, they are
only valid while the directory is open. Once the directory is closed, the handle is invalid.

Variable Notation
The MSFL uses a form of Hungarian notation to designate the type of each variable or
structure member. The type prefixes each variable name. Following is a list of the
notations used by the MSFL.

Structures
The following structures are used to request, read and write data to and from MetaStock
files. Since the MSFL provides only limited data validation, it is the responsibility of the
application program to validate the data before writing it to the MetaStock files.

Date Time Structure
The date time structure is used to specify the date and time. It is both passed to and
returned from many of the MSFL functions. If there is no time, the lTime member of the
structure is set to zero. The section titled “Formats” on page 79 has more information on
the date and time formats.
Structure

typedef struct tagDateTime
{

longlDate;
longlTime;

} DateTime_struct;

Notation Type Description
b BOOL Boolean, a 32-bit value where zero equals false and any non-zero

value equals true.
c char Character, an 8-bit signed value.
dw DWORD Double word, a 32-bit unsigned integer value.
f float A single precision, 32-bit, floating point number.
h N/A A handle, usually a 32-bit value.
i int Integer, a 32-bit signed value.
l long Long integer, a 32-bit signed value.
p N/A A pointer, a 32-bit address.
s N/A Structure, a user defined type.
sz char A null-terminated string of signed characters.
uc BYTE Byte or unsigned character, an 8-bit unsigned value.
ui UINT Unsigned integer, a 32-bit unsigned value.
w WORD Word, a 16-bit unsigned integer value.

82 • MetaStock File Library (MSFL) MetaStock®

Security Information Structure
The security information structure is used to retrieve information about securities and to
add new securities.
Structure

typedef struct
{

DWORDdwTotalSize;
HSECURITYhSecurity;
charszName[MSFL_MAX_NAME_LENGTH+1];
char

szSymbol[MSFL_MAX_SYMBOL_LENGTH+1];
charcPeriodicity;
WORDwInterval;
BOOLbComposite;
BOOLbFlagged;
BYTEucDisplayUnits;
char

szCompSymbol[MSFL_MAX_SYMBOL_LENGTH+1];
charcCompOperator;
floatfCompFactor1;
floatfCompFactor2;
longlFirstDate;
longlLastDate;
longlFirstTime;
longlLastTime;
longlStartTime;
longlEndTime;
longlCollectionDate;
longlMostRecentAdjDate;
floatfMostRecentAdjRatio;
WORDwDataAvailable;

} MSFLSecurityInfo_struct;

MetaStock® MetaStock File Library (MSFL) • 83

Fields
ID Description
dwTotalSize The size of the structure, in bytes. This member must be set to the

structure size before calling any function that takes the structure as a
parameter.

hSecurity The security handle.
szName The name of the security. This is not the symbol, but the name by

which the security should be referred to by the user. Any trailing
spaces should be stripped from the name. The maximum length of
the name, not including the terminating null, is defined by
MSFL_MAX_NAME_LENGTH.

szSymbol The security’s ticker symbol. If this security is a composite, this is
the symbol of the primary security. The maximum length of the
symbol, not including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cPeriodicity The periodicity of the security (i.e. “D”aily, “W”eekly, “M”onthly,
or “I”ntraday). The valid periodicities are defined, (in a string) by
MSFL_VALID_PERIODICITIES.

wInterval The intraday interval of the security. This field indicates the interval,
in minutes, between price data. For tick data and non-intraday
securities, this field is set to zero. The minimum interval is defined
by MSFL_MIN_INTERVAL and the maximum interval is defined
by MSFL_MAX_INTERVAL.

bComposite Boolean value indicating if the security is a composite.
bFlagged Boolean value indicating if the security is flagged. The flagged

status is used by application programs to perform tasks on several
securities (i.e. all securities that are flagged).

ucDisplayUnits The units in which the price data should be displayed: decimal or
fractional. If equal to MSFL_DISPLAY_UNITS_DECIMAL, the
price data should be displayed in decimal format. Otherwise, it
indicates the denominator (e.g. a display units of 4 would indicate
the price data should be displayed in ¼’s). Valid display units range
from MSFL_MIN_DISPLAY_UNITS to
MSFL_MAX_DISPLAY_UNITS.

szCompSymbol The symbol of the secondary security in the composite. If this security is
not a composite, szCompSymbol is a null string. The maximum length
of the composite symbol, not including the terminating null, is defined
by MSFL_MAX_SYMBOL_LENGTH.

cCompOperator The composite operator (i.e. the mathematical operation to perform
between the two securities in the composite: +, -, *, /). The valid
operators are defined, in a string, by MSFL_VALID_OPERATORS. If
the security is not a composite, it is zero.

fCompFactor1 The factor that the primary security’s price data is multiplied by,
before performing the composite operation. If the security is not a
composite, it is zero.

fCompFactor2 The factor that the secondary security’s price data is multiplied by,
before performing the composite operation. If the security is not a
composite, it is zero.

lFirstDate The date of the first price record. For more information on date and
time formats, see “Formats” (page 79).

lLastDate The date of the last price record. For more information on date and
time formats, see “Formats” (page 79).

84 • MetaStock File Library (MSFL) MetaStock®

Price Record Structure
The price record structure is used to read and write price data. All possible price fields
are in the structure. However, not all fields will always be used. The wDataAvailable
field indicates the fields used in the price record. The section titled “Data Field
Combinations” on page 80 has more detailed information.
Structure

typedef struct
{

longlDate;
longlTime;
floatfOpen;
floatfHigh;
floatfLow;
floatfClose;
floatfVolume;
floatfOpenInt;
WORDwDataAvailable;

} MSFLPriceRecord_struct;
Fields

lFirstTime The time of the first price record. For end-of-day securities, this field
is zero. For more information on date and time formats, see
“Formats” (page 79).

lLastTime The time of the last price record. For end-of-day securities, this field
is zero. For more information on date and time formats, see
“Formats” (page 79).

lStartTime The trading start time. This time specifies when the real-time
program should begin collecting price data for this security. For end-
of-day securities, the time is zero. For more information on date and
time formats, see “Formats” (page 79).

lEndTime The trading end time. This time specifies when the real-time
program should stop collecting price data for this security. For end-
of-day securities, the time is zero. For more information on date and
time formats, see “Formats” (page 79).

lCollectionDate The date prior to the first date (i.e. lFirstDate) in which to collect price
data. Since the first date indicates the date of the first record in the
price data, it cannot be adjusted. The collection date indicates to the
collection application, such as The DownLoader, to collect the price
data between the collection date and the first date; thus, allowing
collection of price data prior to the current price data. For more
information on date and time formats, see “Formats” (page 79).

lMostRecentAdjDate Reserved for future use.
fMostRecentAdjRatio Reserved for future use.
wDataAvailable The fields that are available in the associated price data file

(e.g. date, time, open, close, volume, etc.). Use the data field
mnemonics to set and determine the price data fields available. For
more details, see “Data Field Combinations” (page 80).

ID Description
lDate The closing date of the period (i.e. a “period” being a tick, minute, day,

week, month, etc.). For more information on date and time formats,
see “Formats” (page 79).

lTime The closing time of the intraday period.
For more information on date and time formats, see “Formats” (page 79).

ID Description

MetaStock® MetaStock File Library (MSFL) • 85

fOpen The price that the security first traded during the period.
fHigh The highest price that the security traded during the period.
fLow The lowest price that the security traded during the period.
fClose The price of the last trade for the security during the period.
fVolume The volume for the period. The volume may be entered in any units

(e.g. ones, tens, hundreds, etc.), as long as the units are consistent.
Hundreds is most commonly used.

fOpenInt The number of open contracts at the previous day’s close. Open interest
may be in any units.
Open interest is typically available only for futures and options.

wDataAvailable The fields that are available in the data file (e.g. date, time, open, close,
volume, etc.). Use the data field mnemonics to set and determine the
price data fields available (page 80).

ID Description

86 • MetaStock File Library (MSFL) MetaStock®

Using the Library
This section describes important concepts and details on using the MSFL with your
application.

Outline
The basic outline for writing an application that uses the MSFL is as follows.
1. Initialize the MSFL.

See:
• MSFL1_Initialize (page 115)
• The section titled “Initialization” on page 87 has more on initializing the MSFL.

2. Open the directory.
See:
• MSFL1_OpenDirectory (page 119)

3. Obtain the security handle(s).
See:
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetSecurityHandle (page 111)
• MSFL2_GetSecurityHandles (page 125), etc.

4. Lock the security.
See:
• MSFL1_LockSecurity (page 116)

5. Process the price data.
See:
• MSFL1_ReadDataRec (page 122)
• MSFL2_ReadMultipleRecs (page 128), etc.

6. Unlock the security.
See:
• MSFL1_UnlockSecurity (page 124)

7. Move to the next security.
See:
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetPrevSecurityInfo (page 109), etc.

8. Close the directory.
See:
• MSFL1_CloseDirectory (page 92)

9. Shut down the MSFL.
See:
• MSFL1_Shutdown (page 124)

MetaStock® MetaStock File Library (MSFL) • 87

Initialization
Before calling any of the price data or security functions, the library must be initialized
by calling MSFL1_Initialize (page 115). After using the library and before terminating
the application program, the library must be shut down with a call to MSFL1_Shutdown
(page 124).

Directory Opening
Before any of the MSFL functions can be used to read securities or price data, the
directory containing the MetaStock files must first be opened via
MSFL1_OpenDirectory (page 119).
The MSFL manages directories similar to the way operating systems manage files.
When opening a directory, a directory number is returned. This directory number can be
thought of as a handle. Once the directory is open, it remains open until it is closed or
until the MSFL is shutdown. As with files, multiple directories can be open
concurrently. The MSFL limits the number of open directories to
MSFL_MAX_OPEN_DIRECTORIES.

Security Locking
Before accessing a security or its price data, the security must first be locked via
MSFL1_LockSecurity (page 116). Locking prevents other users or applications from
modifying or deleting the security while it is in use. Since locking may prevent other
users and applications from accessing data, the application should unlock the security as
soon as it is finished using the security.
When locking composite securities, the primary and secondary securities are also
locked internally by the MSFL. Thus, if the composite or any of its parts cannot be
locked, the lock fails.
An application cannot concurrently lock the same security multiple times.
If the application attempts to lock a security that is already locked by the application,
the lock will fail.
If the security was locked by another user, the MSFL1_GetLastFailedLockInfo
(page 105) function can be used to retrieve the user name or number of users with the
security locked.

Lock Types
There are three different lock types that can be applied to a security by the application
program. To allow other users and applications to share security and price data, the
application should always use the lowest lock type available for the operation.
Following is a list of the different lock types in order of precedence.

Full A “full” lock, defined by MSFL_LOCK_FULL_LOCK, provides the
application with total control of the security. The application can edit the
security information as well as read and write price data. Other users cannot
lock the security, nor can this security be used by a composite security.

Write A “write” lock, defined by MSFL_LOCK_WRITE_LOCK, allows the
application to read and write security price data, but does not allow the
application to edit the security information (e.g. name, symbol, composite factor,
etc.). When a security is “write” locked, the security cannot be locked by other
users. Since composite price data cannot be written, composite securities cannot
be “write” locked. Attempting to “write” lock a composite will result in an error.

Prevent
Write

A “prevent write” lock, defined by MSFL_LOCK_PREV_WRITE_LOCK,
allows the application to read but not write price data. When a security is
“prevent write” locked, other users cannot “write” or “full” lock the security.
However, the security can be “prevent write” locked by multiple users.

88 • MetaStock File Library (MSFL) MetaStock®

Data Assumptions and Requirements
The MSFL assumes that the price data is in ascending date/time order. If there are
duplicate price records grouped together, the MSFL will find the first record for a given
date/time.
The MSFL requires that all the securities in a directory are unique (i.e. the ticker symbol,
periodicity, and interval of one security does not match that of another). Composites may
have a duplicate ticker symbol, periodicity, and interval, but only one composite of each
operator (i.e. add, subtract, multiply, and divide) is allowed.

IMPORTANT: A directory with duplicate securities cannot be opened unless the securities are merged;
see MSFL1_OpenDirectory (page 119) for more information.

Error Handling
The MSFL allows the application program to detect and recover from a variety of errors
resulting from any of its functions. All functions in the MSFL return error conditions in
the form of negative return codes. Other informational messages are returned as positive
return codes. Always use the mnemonic error codes defined in appropriate header file
(i.e. msfl.h, msfl.bas, msfl.inc or msfl.pas). The values of the error codes may
change in future versions, so by using the mnemonic, the application program will
remain compatible.

CAUTION: If the MSFL encounters a serious problem with the operating system or its internal
tables, an MSFL_ERR_MSFL_CORRUPT error code is returned. If the application
encounters this error, the MSFL should be shut down and the application program
should exit. Any additional calls to the MSFL will not be performed and the
MSFL_ERR_MSFL_CORRUPT error code will be returned. In some instances, the
operating system itself may be corrupt, so it is recommended that the user reboot the
computer after exiting the application.
For a complete list of error codes, see the “Error Codes”section of this manual
beginning on page 131.

Functions
This section contains an alphabetical list of the available MSFL functions.
The function prototypes, structures, error codes, message codes, and miscellaneous
defines are contained in the header file (msfl.h, msfl.bas, msfl.inc or msfl.pas).
This header file should be included in each module that uses any of the MSFL functions.

Return Values
Unless otherwise stated in the function, all MSFL functions return an MSFL error code.
On successful completion, MSFL_NO_ERR is returned; in the event of an error,
the specific MSFL error code is returned. For a complete list of error codes, see the
“Error Codes”section of this manual beginning on page 131.
Some functions return an MSFL message to indicate the action taken by the function.
These messages are documented in the functions themselves. For a complete list of
message codes, see the “Message Codes” section of this manual beginning on page 136.

MetaStock® MetaStock File Library (MSFL) • 89

Listed By Name
Here is a name-ordered list of the MSFL functions (with a link to their description page).
Function Name Page
MSFL1_CloseDirectory 92
MSFL1_FindDataDate 92
MSFL1_FindDataRec 93
MSFL1_FormatDate 94
MSFL1_FormatTime 95
MSFL1_GetCurrentDataPos 96
MSFL1_GetDataPath 97
MSFL1_GetDataRecordCount 97
MSFL1_GetDayMonthYear 98
MSFL1_GetDirectoryNumber 99
MSFL1_GetDirectoryStatus 100
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetErrorMessage 102
MSFL1_GetFirstSecurityInfo 103
MSFL1_GetHourMinTicks 104
MSFL1_GetLastFailedLockInfo 105
MSFL1_GetLastFailedOpenDirInfo 106
MSFL1_GetLastSecurityInfo 106
MSFL1_GetMSFLState 107
MSFL1_GetNextSecurityInfo 108
MSFL1_GetPrevSecurityInfo 109
MSFL1_GetRecordCountForDateRange 110
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecurityID 112
MSFL1_GetSecurityInfo 113
MSFL1_GetSecurityLockedStatus 114
MSFL1_Initialize 115
MSFL1_LockSecurity 116
MSFL1_MakeMSFLDate 117
MSFL1_MakeMSFLTime 118
MSFL1_OpenDirectory 119
MSFL1_ParseDateString 120
MSFL1_ParseTimeString 121
MSFL1_ReadDataRec 122
MSFL1_SeekBeginData 123
MSFL1_SeekEndData 123
MSFL1_Shutdown 124
MSFL1_UnlockSecurity 124
MSFL2_GetSecurityHandles 125
MSFL2_ReadBackMultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

90 • MetaStock File Library (MSFL) MetaStock®

Listed By Type
Here are type-ordered lists of the MSFL functions (each linked to their description page).
Data.

Date / Time.

Directory.

Error Reporting.

Locking.

Function Name Page
MSFL1_GetDataRecordCount 97
MSFL1_GetRecordCountForDateRange 110
MSFL1_ReadDataRec 122
MSFL2_ReadBackMultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

Function Name Page
MSFL1_FormatDate 94
MSFL1_FormatTime 95
MSFL1_GetDayMonthYear 98
MSFL1_GetHourMinTicks 104
MSFL1_MakeMSFLDate 117
MSFL1_MakeMSFLTime 118
MSFL1_ParseDateString 120
MSFL1_ParseTimeString 121

Function Name Page
MSFL1_CloseDirectory 92
MSFL1_GetDataPath 97
MSFL1_GetDirectoryNumber 99
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetDirectoryStatus 100
MSFL1_OpenDirectory 119

Function Name Page
MSFL1_GetErrorMessage 102
MSFL1_GetLastFailedLockInfo 105
MSFL1_GetLastFailedOpenDirInfo 106

Function Name Page
MSFL1_GetSecurityLockedStatus 114
MSFL1_LockSecurity 116
MSFL1_UnlockSecurity 124

MetaStock® MetaStock File Library (MSFL) • 91

Search / Positioning.

Security.

System.

Reference
The following pages describe, in alphabetical order, the functions in the MetaStock File
Library. The discussion of each function includes a section that illustrates the function
syntax — in C, Visual Basic, Delphi and PowerBASIC – followed by these sections.

Function Name Page
MSFL1_FindDataDate 92
MSFL1_FindDataRec 93
MSFL1_GetCurrentDataPos 96
MSFL1_SeekBeginData 123
MSFL1_SeekEndData 123

Function Name Page
MSFL1_GetFirstSecurityInfo 103
MSFL1_GetLastSecurityInfo 106
MSFL1_GetNextSecurityInfo 108
MSFL1_GetPrevSecurityInfo 109
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecurityID 112
MSFL1_GetSecurityInfo 113
MSFL2_GetSecurityHandles 125

Function Name Page
MSFL1_GetMSFLState 107
MSFL1_Initialize 115
MSFL1_Shutdown 124

ID Description
Locking Indicates the minimal lock the application must have on the security before

calling the function.
Return Value Provides the most common return values. In most cases other MSFL

error/message codes may be returned.
The section titled “Messages and Errors” on page 131 has a complete
listing of these codes.

Parameters Describes each argument passed to the function.
Remarks Provides a brief description of the function and any additional notes on its

use.
See Also Provides the names of related functions.

92 • MetaStock File Library (MSFL) MetaStock®

MSFL1_CloseDirectory
C

int MSFL1_CloseDirectory(char cDirNumber)

Visual Basic
MSFL1_CloseDirectory (ByVal cDirNumber As Byte) As Long

Delphi
MSFL1_CloseDirectory (cDirNumber : char) : integer;

PowerBASIC
MSFL1_CloseDirectory (BYVAL cDirNumber AS BYTE) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the directory is not open
Parameters

Remarks
• Closes an open directory. All open files in the directory are closed.
• When the last user closes a directory, the MASTER, EMASTER, and XMASTER

files are updated with any changes made while the directory was open and the
temporary MSFL files are removed from the directory.

See Also
• MSFL1_OpenDirectory (page 119)
• MSFL1_Shutdown (page 124)

MSFL1_FindDataDate
C

int MSFL1_FindDataDate(HSECURITY hSecurity,
DateTime_struct *psRecordDate,
WORD *pwRecordNum,
int iFindMode)

Visual Basic
MSFL1_FindDataDate(ByVal hSecurity As Long,
psRecordDate As DateTime_struct,
pwRecordNum As Integer,
ByVal iFindMode As Long) As Long

Delphi
MSFL1_FindDataDate(hSecurity : HSECURITY;
Var psRecordDate : DateTime_struct;
Var pwRecordNum : word;
iFindMode : integer) : integer;

PowerBASIC
MSFL1_FindDataDate(BYVAL hSecurity AS DWORD,
psRecordDate AS DateTime_struct,
pwRecordNum As Word,
BYVAL iFindMode As Long) As Long

Locking
• Prevent Write Lock

ID Description
cDirNumber Identifies the directory in which to close.

MetaStock® MetaStock File Library (MSFL) • 93

Return Values
• MSFL_NO_ERR if successful
• MSFL_MSG_NOT_AN_EXACT_MATCH if successful, but an exact match was

not found
• MSFL_ERR_DATE_BEFORE_FIRST_REC if the specified date/time is before

the first price record
• MSFL_ERR_DATE_AFTER_LAST_REC if the specified date/time is after the

last price record
• MSFL_ERR_DATA_RECORD_NOT_FOUND if a matching price record could

not be found for the specified date/time
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records
Parameters

Remarks
• Finds the price record for the specified date/time and sets the current data position to

that record.
See Also
• MSFL1_FindDataRec (page 93)
• MSFL1_GetCurrentDataPos (page 96)
• MSFL1_SeekBeginData (page 123)
• MSFL1_SeekEndData (page 123)

MSFL1_FindDataRec
C

int MSFL1_FindDataRec(HSECURITY hSecurity,
WORD wRecordNum,
DateTime_struct *psRecordDate)

Visual Basic
MSFL1_FindDataRec(ByVal hSecurity As Long,
ByVal wRecordNum As Integer,
psRecordDate As DateTime_struct) As Long

Delphi
MSFL1_FindDataRec(hSecurity : HSECURITY;
wRecordNum : word;
Var psRecordDate : DateTime_struct) : integer;

ID Description
hSecurity Identifies the security.
psRecordDate Points to a DateTime_struct structure containing the date/time to find. If the

security is not an intraday security, the time is ignored. If an exact match is
not found, psRecordDate receives the date/time of the record found.

pwRecordNum Points to a WORD that receives the record number for the price record found.
If the record is not found or if the security is a composite the record number is
returned as zero.

iFindMode Indicates what type of search to perform to locate the price record. Following
are the different modes available.
• MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
• MSFL_FIND_CLOSEST_NEXT

If an exact match is not found, find the next closest record.
• MSFL_FIND_EXACT_MATCH

Find an exact date/time match.

94 • MetaStock File Library (MSFL) MetaStock®

PowerBASIC
MSFL1_FindDataRec(BYVAL hSecurity AS DWORD,

BYVAL wRecordNum As Word,
psRecordDate AS DateTime_struct) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_RECORD_OUT_OF_RANGE if a price record does not exist for the

specified record number
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records
Parameters

Remarks
• Finds the price record for the specified record number and sets the current data

position to that record.
Note: This function cannot be used with composite securities.

See Also
• MSFL1_FindDataDate (page 92)
• MSFL1_GetCurrentDataPos (page 96)
• MSFL1_SeekBeginData (page 123)
• MSFL1_SeekEndData (page 123)

MSFL1_FormatDate
C

int MSFL1_FormatDate(LPSTR pszDateString,
WORD wStringSize,
long lDate);

Visual Basic
MSFL1_FormatDate(ByVal pszDateString As String,
ByVal wStringSize As Integer,
ByVal lDate As Long) As Long

Delphi
MSFL1_FormatDate(pszDateString : LPSTR;
wStringSize : word;
lDate : integer) : integer;

PowerBASIC
MSFL1_FormatDate(pszDateString AS ASCIIZ,
BYVAL wStringSize As Word,
BYVAL lDate As Long) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_DATE if the date to be formatted is invalid
• ERROR_INSUFFICIENT_BUFFER if the date string is not large enough

ID Description
hSecurity Identifies the security.
wRecordNum Specifies the record number to find. Record numbers are one based.
psRecordDate Points to a DateTime_struct structure that receives the date/time of price

record found.

MetaStock® MetaStock File Library (MSFL) • 95

Parameters

Remarks
• Formats an MSFL date as a date string. The string is formatted based on the Windows

short date format, using the default system locale.
See Also
• MSFL1_FormatTime (page 95)
• MSFL1_GetDayMonthYear (page 98)
• MSFL1_ParseDateString (page 120)
• MSFL1_ParseTimeString (page 121)

MSFL1_FormatTime
C

int MSFL1_FormatTime(LPSTR pszTimeString,
WORD wStringSize,
long lTime,
BOOL bIncludeTicks);

Visual Basic
MSFL1_FormatTime(ByVal pszTimeString As String,
ByVal wStringSize As Integer,
ByVal lTime As Long,
ByVal bIncludeTicks As Long) As Long

Delphi
MSFL1_FormatTime(pszTimeString : LPSTR;
wStringSize : word;
lTime : integer;
bIncludeTicks : bool) : integer;

PowerBASIC
MSFL1_FormatTime(pszTimeString AS ASCIIZ,
BYVAL wStringSize As Word,
BYVAL lTime As Long,
BYVAL bIncludeTicks AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_TIME if the time to be formatted is invalid
• ERROR_INSUFFICIENT_BUFFER if the time string is not large enough
Parameters

ID Description
pszDateString Points to a null-terminated string that receives the formatted date string.
wStringSize Indicates the maximum string length that pszDateString can receive,

including the terminating null.
lDate The MSFL date to be formatted.

ID Description
pszTimeString Points to a null-terminated string that receives the formatted time string.
wStringSize Indicates the maximum string length that pszTimeString can receive,

including the terminating null.
lTime The MSFL time to be formatted.
bIncludeTicks Indicates if the time string will include ticks (e.g., 10:51:002 AM),

or hours and minutes only (e.g., 10:51 AM).

96 • MetaStock File Library (MSFL) MetaStock®

Remarks
• Formats an MSFL time as a time string. The string is formatted based on the

Windows time format, using the default system locale.
See Also
• MSFL1_FormatDate (page 94)
• MSFL1_GetHourMinTicks (page 104)
• MSFL1_ParseDateString (page 120)
• MSFL1_ParseTimeString (page 121)

MSFL1_GetCurrentDataPos
C

int MSFL1_GetCurrentDataPos(HSECURITY hSecurity,
WORD *pwRecordNum,
DateTime_struct *psRecordDate)

Visual Basic
MSFL1_GetCurrentDataPos(ByVal hSecurity As Long,
pwRecordNum As Integer,
psRecordDate As DateTime_struct) As Long

Delphi
MSFL1_GetCurrentDataPos(hSecurity : HSECURITY;
Var pwRecordNum : word;
Var psRecordDate : DateTime_struct) : integer;

PowerBASIC
MSFL1_GetCurrentDataPos(BYVAL hSecurity AS DWORD,
pwRecordNum As Word,
psRecordDate AS DateTime_struct) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

Remarks
• Gets the record number and the date/time of the price record at the current data

position. If the security is a composite the record number is returned as zero.
See Also
• MSFL1_FindDataDate (page 92)
• MSFL1_FindDataRec (page 93)
• MSFL1_SeekBeginData (page 123)
• MSFL1_SeekEndData (page 123)

ID Description
hSecurity Identifies the security.
pwRecordNum Points to a WORD that receives the record number of the current data

position. If the record is a composite the record number is returned as
zero.

psRecordDate Points to a DateTime_struct structure (page 81) that receives the
date/time of price record at the current data position.

MetaStock® MetaStock File Library (MSFL) • 97

MSFL1_GetDataPath
C

int MSFL1_GetDataPath(char cDirNumber,
LPSTR pszPath,
BOOL bRemoveTrailingSlash)

Visual Basic
MSFL1_GetDataPath(
ByVal cDirNumber As Byte,
ByVal pszPath As String,
ByVal bRemoveTrailingSlash As Long) As Long

Delphi
MSFL1_GetDataPath(cDirNumber : char;
pszPath : LPSTR;
bRemoveTrailingSlash : BOOL) : integer;

PowerBASIC
MSFL1_GetDataPath(BYVAL cDirNumber AS BYTE,
pszPath AS ASCIIZ,
BYVAL bRemoveTrailingSlash AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the specified directory is not open
Parameters

Remarks
• Gets the path for the specified directory.
See Also
• MSFL1_GetDirectoryNumber (page 99)
• MSFL1_GetDirectoryStatus (page 100)
• MSFL1_OpenDirectory (page 119)

MSFL1_GetDataRecordCount
C

int MSFL1_GetDataRecordCount(HSECURITY hSecurity,
WORD *pwNumOfDataRecs)

Visual Basic
MSFL1_GetDataRecordCount(ByVal hSecurity As Long,
pwNumOfDataRecs As Integer) As Long

Delphi
MSFL1_GetDataRecordCount(hSecurity : HSECURITY;
Var pwNumOfDataRecs : word) : integer;

ID Description
cDirNumber Identifies the directory.
pszPath Points to a null-terminated string that receives the path.

The path can be up to MSFL_MAX_PATH bytes in length.
bRemoveTrailingSlash Specifies whether or not the trailing backslash should be

removed from the path.
(e.g. C:\MetaStock Data\Stocks\ would be returned as
C:\MetaStock Data\Stocks). This flag has no effect on
root paths (i.e. C:\ will always be returned as C:\).

98 • MetaStock File Library (MSFL) MetaStock®

PowerBASIC
MSFL1_GetDataRecordCount(BYVAL hSecurity AS DWORD,
pwNumOfDataRecs As Word) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

Remarks
• Gets the number of price records for the specified security.
• For composite securities, the number of price records returned is an estimate. The

actual number of records will be equal to or less than what is reported by this
function.

See Also
• MSFL1_GetRecordCountForDateRange (page 110)

MSFL1_GetDayMonthYear
C

int MSFL1_GetDayMonthYear(WORD *pwDay,
WORD *pwMonth,
WORD *pwYear,
long lDate);

Visual Basic
MSFL1_GetDayMonthYear(pwDay As Integer,
pwMonth As Integer,
pwYear As Integer,
ByVal lDate As Long) As Long

Delphi
MSFL1_GetDayMonthYear(Var pwDay : word;
Var pwMonth : word;
Var pwYear : word
lDate:longint) : integer;

PowerBASIC
MSFL1_GetDayMonthYear(pwDay As Word,
pwMonth As Word,
pwYear As Word,
BYVAL lDate As Long) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_DATE if the date is invalid
Parameters

ID Description
hSecurity Identifies the security.
pwNumOfDataRecs Points to a WORD that receives the number of price records.

ID Description
pwDay Points to a WORD that receives the day of the month.
pwMonth Points to a WORD that receives the month; January = 1, February = 2,

and so on.

MetaStock® MetaStock File Library (MSFL) • 99

Remarks
• Extracts an MSFL date into its components: day, month and year.
See Also
• MSFL1_FormatDate (page 94)
• MSFL1_GetHourMinTicks (page 104)
• MSFL1_MakeMSFLDate (page 117)

MSFL1_GetDirectoryNumber
C

int MSFL1_GetDirectoryNumber(LPCSTR pszPath,
char *pcDirNumber)

Visual Basic
MSFL1_GetDirectoryNumber(ByVal pszPath As String,
pcDirNumber As Byte) As Long

Delphi
MSFL1_GetDirectoryNumber(pszPath : LPCSTR;
Var pcDirNumber : char) : integer;

PowerBASIC
MSFL1_GetDirectoryNumber(pszPath AS ASCIIZ,
pcDirNumber AS BYTE) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the directory is not open
• MSFL_ERR_DIR_DOES_NOT_EXIST if the directory does not exist
Parameters

Remarks
• Gets the directory number associated with an open directory.
See Also
• MSFL1_GetDataPath (page 97)
• MSFL1_GetDirectoryStatus (page 100)
• MSFL1_GetDirNumberFromHandle (page 100)
• MSFL1_OpenDirectory (page 119)

pwYear Points to a WORD that receives the year. The year is always a four-digit
year (e.g., 2001).

lDate The MSFL date to be extracted.

ID Description
pszPath Points to a null-terminated string that contains the path.

The path can be up to MSFL_MAX_PATH bytes in length.
pcDirNumber Points to a character that receives the directory number for the path.

ID Description

100 • MetaStock File Library (MSFL) MetaStock®

MSFL1_GetDirNumberFromHandle
C

int MSFL1_GetDirNumberFromHandle(HSECURITY hSecurity,
char *pcDirNumber)

Visual Basic
MSFL1_GetDirNumberFromHandle(ByVal hSecurity As Long,
pcDirNumber As Byte) As Long

Delphi
MSFL1_GetDirNumberFromHandle(hSecurity : HSECURITY;
Var pcDirNumber : char) : integer;

PowerBASIC
MSFL1_GetDirNumberFromHandle(BYVAL hSecurity AS DWORD,

pcDirNumber AS BYTE) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_SECURITY_HANDLE if the handle is invalid
Parameters

Remarks
• Gets the directory number for the specified security.
See Also
• MSFL1_GetSecurityHandle (page 111)
• MSFL1_GetDirectoryNumber (page 99)

MSFL1_GetDirectoryStatus
C

int MSFL1_GetDirectoryStatus(char cDirNumber,
LPCSTR pszDirectory,
MSFLDirectoryStatus_struct *psDirStatus)

Visual Basic
MSFL1_GetDirectoryStatus(ByVal cDirNumber As Byte,
ByVal pszDirectory As String,
psDirStatus As MSFLDirectoryStatus_struct) As Long

Delphi
MSFL1_GetDirectoryStatus(cDirNumber : char;
pszDirectory : LPCSTR;
Var psDirStatus : MSFLDirectoryStatus_struct) : integer;

PowerBASIC
MSFL1_GetDirectoryStatus(BYVAL cDirNumber AS BYTE,
pszDirectory AS ASCIIZ,
psDirStatus AS MSFLDirectoryStatus_struct) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the directory is not open
• MSFL_ERR_DIR_DOES_NOT_EXIST if the directory does not exist

ID Description
hSecurity Identifies the security.
pcDirNumber Points to a character that receives the directory number for the security.

MetaStock® MetaStock File Library (MSFL) • 101

Parameters

Remarks
• Gets the directory status information.
• The directory can be specified either by cDirNumber or pszDirectory. For example, if

the directory is open, the directory status can be retrieved by making the following
call: MSFL1_GetDirectoryStatus(cDirNumber, NULL,
&sDirStatus). If the directory is not open, the directory status can be retrieved by
making the following call: MSFL1_GetDirectoryStatus(0,
szDirectory, &sDirStatus).

• The MSFLDirectoryStatus_struct structure is defined as follows:
typedef struct
{
DWORD dwTotalSize;
BOOL bExists;
BOOL bInUse;
BOOL bMetaStockDir;
WORD wDriveType;
BOOL bOpen;
BOOL bReadOnly;
BOOL bUserInvalid;
char cDirNumber;
DWORD dwNumOfSecurities;

} MSFLDirectoryStatus_struct;

Fields

ID Description
cDirNumber Identifies the directory. If zero, the path pointed to by pszDirectory is used

instead. The cDirNumber is typically used to obtain the status of an open
directory, while pszDirectory is typically used to obtain the status of a
closed directory.

pszDirectory Points to a null-terminated string that contains the directory. This pointer
can be left null if the directory is specified by cDirNumber.

psDirStatus Points to an MSFLDirectoryStatus_struct structure (page 101) that
receives the directory status. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetDirectoryStatus (page 100).

ID Description
dwTotalSize The size of the structure, in bytes.
bExists Boolean value indicating if the directory exists.
bInUse Boolean value indicating if the directory is in use by one or more

MSFL users.
bMetaStockDir Boolean value indicating if the directory contains MetaStock files.

102 • MetaStock File Library (MSFL) MetaStock®

See Also
• MSFL1_GetDataPath (page 97),
• MSFL1_GetDirectoryNumber (page 99),
• MSFL1_GetSecurityCount (page 111)
• MSFL1_OpenDirectory (page 119)

MSFL1_GetErrorMessage
C

LPSTR MSFL1_GetErrorMessage(int iErr,
LPSTR pszErrorMessage,
WORD wMaxMsgLength)

Visual Basic
MSFL1_GetErrorMessage(ByVal iErr As Long,
ByVal pszErrorMessage As String,
ByVal wMaxMsgLength As Integer) As String

Delphi
MSFL1_GetErrorMessage(iErr : integer;
pszErrorMessage : LPSTR;
wMaxMsgLength : WORD) : LPSTR;

PowerBASIC
MSFL1_GetErrorMessage(BYVAL iErr As Long,
pszErrorMessage AS ASCIIZ,
BYVAL wMaxMsgLength As Word) AS STRING

Locking
• None

wDriveType The drive type, which can be any one of the following:
• MSFL_DRIVE_TYPE_UNKNOWN

The drive type is unknown.
• MSFL_DRIVE_TYPE_REMOVABLE

The drive is removable media.
• MSFL_DRIVE_TYPE_FIXED

The drive is fixed (i.e. a hard drive).
• MSFL_DRIVE_TYPE_REMOTE

The drive is remote (i.e. a network drive).
• MSFL_DRIVE_TYPE_CD_ROM

The drive is a local CD-ROM drive – network CD-ROM drives are
reported as remote drives.

• MSFL_DRIVE_TYPE_RAM_DISK
The drive is a RAM disk.

bOpen Boolean value indicating if the directory is open.
bReadOnly Boolean value indicating if the directory is on read-only media. This

field is only defined if the directory is open.
bUserInvalid Boolean value indicating if the user is invalid. A user is invalid when

another user with the same user ID is forced into the directory already
in use by the current user. This field is only defined if the directory is
open.

cDirNumber The directory number, if the directory is open.
dwNumOfSecurities The number of securities in the directory, if the directory is open.

Remember if the directory is not open, bReadOnly, bUserInvalid,
cDirNumber, and dwNumOfSecurities are undefined. In other
words, the directory must be open to determine if the directory is
read-only.

ID Description

MetaStock® MetaStock File Library (MSFL) • 103

Return Values
• A pointer to the error message string.

The pointer returned is the same as the pointer passed as the input argument
pszErrorMessage

Parameters

Remarks
• Returns a string error message for the specified MSFL error code.
See Also
• MSFL1_GetLastFailedLockInfo (page 105)
• MSFL1_GetLastFailedOpenDirInfo (page 106)

MSFL1_GetFirstSecurityInfo
C

int MSFL1_GetFirstSecurityInfo(char cDirNumber,
MSFLSecurityInfo_struct *psSecurityInfo)

Visual Basic
MSFL1_GetFirstSecurityInfo(ByVal cDirNumber As Byte,
psSecurityInfo As MSFLSecurityInfo_struct) As Long

Delphi
MSFL1_GetFirstSecurityInfo(cDirNumber : char;
Var psSecurityInfo : MSFLSecurityInfo_struct) : integer;

PowerBASIC
MSFL1_GetFirstSecurityInfo(BYVAL cDirNumber AS BYTE,
psSecurityInfo AS MSFLSecurityInfo_struct) As Long

Locking
• None
Return Values
• MSFL_MSG_LAST_SECURITY_IN_DIR if successful and this security is the last

security in the directory
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the directory is empty
Parameters

Remarks
• Gets the security information for the first security in the directory.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

ID Description
iErr Indicates the MSFL error.
pszErrorMessage Points to a null-terminated string that receives the error message.
wMaxMsgLength Indicates the maximum message length that pszErrorMessage can

receive, not including the terminating null.
The maximum length error message that the MSFL will return is
defined by MSFL_MAX_ERR_MSG_LENGTH.

ID Description
cDirNumber Identifies the directory.
psSecurityInfo Points to an MSFLSecurityInfo_struct structure (page 82) that receives

the security information. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetFirstSecurityInfo.

104 • MetaStock File Library (MSFL) MetaStock®

See Also
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetPrevSecurityInfo (page 109)
• MSFL1_GetSecurityInfo (page 113)
• MSFL2_GetSecurityHandles (page 125)

MSFL1_GetHourMinTicks
C

int MSFL1_GetHourMinTicks(WORD *pwHour,
WORD *pwMin,
WORD *pwTicks,
long lTime);

Visual Basic
MSFL1_GetHourMinTicks(pwHour As Integer,
pwMin As Integer,
pwTicks As Integer,
ByVal lTime As Long) As Long

Delphi
MSFL1_GetHourMinTicks(Var pwHour : word;
Var pwMin : word;
Var pwTicks : word;
lTime : longint) : integer;

PowerBASIC
MSFL1_GetHourMinTicks(pwHour As Word,
pwMin As Word,
pwTicks As Word,
BYVAL lTime As Long) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_TIME if the time is invalid
Parameters

Remarks
• Extracts an MSFL time into its components: hour, minutes and ticks.
See Also
• MSFL1_FormatTime (page 95)
• MSFL1_GetDayMonthYear (page 98)
• MSFL1_MakeMSFLTime (page 118)

ID Description
pwHour Points to a WORD that receives the hour. The hour is always in 24-hour

format.
pwMin Points to a WORD that receives the minutes.
pwTicks Points to a WORD that receives the ticks.
lTime The MSFL time to be extracted.

MetaStock® MetaStock File Library (MSFL) • 105

MSFL1_GetLastFailedLockInfo
C

int MSFL1_GetLastFailedLockInfo(LPSTR pszAppName,
LPSTR pszUserName,
UINT *puiUsersWithLock,
UINT *puiLockType)

Visual Basic
MSFL1_GetLastFailedLockInfo(ByVal pszAppName As String,
ByVal pszUserName As String,
puiUsersWithLock As Long,
puiLockType As Long) As Long

Delphi
MSFL1_GetLastFailedLockInfo(pszAppName : LPSTR;
pszUserName : LPSTR;
Var puiUsersWithLock : UINT;
Var puiLockType : UINT) : integer;

PowerBASIC
MSFL1_GetLastFailedLockInfo(pszAppName AS ASCIIZ,

pszUserName AS ASCIIZ,
puiUsersWithLock AS DWORD,
puiLockType AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
Parameters

Remarks
• Gets the user information for the user(s) who had the security locked when the last

security lock failed. If multiple users had the security locked, the application name
and user name are returned blank.

See Also
• MSFL1_LockSecurity (page 116)
• MSFL1_GetErrorMessage (page 102)

ID Description
pszAppName Points to a null-terminated string that receives the application name.

The application name can be up to
MSFL_MAX_APP_NAME_LENGTH bytes, not including the
terminating null.

pszUserName Points to a null-terminated string that receives the user name. The
user name can be up to MSFL_MAX_USER_NAME_LENGTH
bytes, not including the terminating null. If the security was not
locked, the user name is returned as “no users.” If the user is
unknown, the user name is returned as “unknown user.”

puiUsersWithLock Points to an unsigned integer that receives the number of users that
had the security locked.

puiLockType Points to an unsigned integer that receives the lock type. Following
are the possible lock types.
• MSFL_LOCK_PREV_WRITE_LOCK

The security is prevent write locked.
• MSFL_LOCK_WRITE_LOCK

The security is write locked.
• MSFL_LOCK_FULL_LOCK

The security is full locked.

106 • MetaStock File Library (MSFL) MetaStock®

MSFL1_GetLastFailedOpenDirInfo
C

int MSFL1_GetLastFailedOpenDirInfo(LPSTR pszAppName,
LPSTR pszUserName)

Visual Basic
MSFL1_GetLastFailedOpenDirInfo(ByVal pszAppName As String,
ByVal pszUserName As String) As Long

Delphi
MSFL1_GetLastFailedOpenDirInfo(pszAppName : LPSTR;
pszUserName : LPSTR) : integer;

PowerBASIC
MSFL1_GetLastFailedOpenDirInfo(pszAppName AS ASCIIZ,
pszUserName AS ASCIIZ) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
Parameters

Remarks
• Gets the user information for the last failed directory open. If the directory is in use by

a non-MSFL application or if the user is already using the directory, this function can
be used to retrieve the user information and display a message for the user.

Note: This function will only return the user information if MSFL1_OpenDirectory (page 119)
fails with an MSFL_ERR_USER_ID_ALREADY_IN_DIR or an
MSFL_ERR_NON_MSFL_USER_IN_DIR error.

See Also
• MSFL1_OpenDirectory (page 119)
• MSFL1_GetErrorMessage (page 102)

MSFL1_GetLastSecurityInfo
C

int MSFL1_GetLastSecurityInfo(char cDirNumber,
MSFLSecurityInfo_struct *psSecurityInfo)

Visual Basic
MSFL1_GetLastSecurityInfo(ByVal cDirNumber As Byte,
psSecurityInfo As MSFLSecurityInfo_struct) As Long

Delphi
MSFL1_GetLastSecurityInfo(cDirNumber : char;
Var psSecurityInfo : MSFLSecurityInfo_struct) : integer;

PowerBASIC
MSFL1_GetLastSecurityInfo(BYVAL cDirNumber AS BYTE,
psSecurityInfo AS MSFLSecurityInfo_struct) As Long

ID Description
pszAppName Points to a null-terminated string that receives the application name.

The application name can be up to
MSFL_MAX_APP_NAME_LENGTH bytes, not including the
terminating null.

pszUserName Points to a null-terminated string that receives the user name.
The user name can be up to MSFL_MAX_USER_NAME_LENGTH
bytes, not including the terminating null. If a non-MSFL application is
using the directory, the user name is returned blank.

MetaStock® MetaStock File Library (MSFL) • 107

Locking
• None
Return Values
• MSFL_MSG_FIRST_SECURITY_IN_DIR if successful and this security is the

first security in the directory
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the directory is empty
Parameters

Remarks
• Gets the security information for the last security in the directory.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

See Also
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetPrevSecurityInfo (page 109)
• MSFL1_GetSecurityInfo (page 113)
• MSFL2_GetSecurityHandles (page 125)

MSFL1_GetMSFLState
C

int MSFL1_GetMSFLState(void)

Visual Basic
MSFL1_GetMSFLState() As Long

Delphi
MSFL1_GetMSFLState : integer;

PowerBASIC
MSFL1_GetMSFLState() As Long

Locking
• None
Return Values
• MSFL_STATE_INITIALIZED The MSFL is initialized and available for use
• MSFL_STATE_UNINITIALIZED The MSFL has not been initialized and must be

initialized before any of the MSFL functions can be used to access MetaStock files
• MSFL_STATE_CORRUPT The MSFL is in a corrupt state. The MSFL internal

tables have been damaged or the operating system has been corrupted. At this point
the MSFL should be shutdown and the application program should be terminated

Parameters
• None
Remarks
• Returns the state of the MetaStock file library.

ID Description
cDirNumber Identifies the directory.
psSecurityInfo Points to an MSFLSecurityInfo_struct structure (page 82) that receives

the security information. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetLastSecurityInfo.

108 • MetaStock File Library (MSFL) MetaStock®

See Also
• MSFL1_Initialize (page 115)
• MSFL1_Shutdown (page 124)

MSFL1_GetNextSecurityInfo
C

int MSFL1_GetNextSecurityInfo(HSECURITY hSecurity,
MSFLSecurityInfo_struct *psSecurityInfo)

Visual Basic
MSFL1_GetNextSecurityInfo(ByVal hSecurity As Long,
psSecurityInfo As MSFLSecurityInfo_struct) As Long

Delphi
MSFL1_GetNextSecurityInfo(hSecurity : HSECURITY;
Var psSecurityInfo : MSFLSecurityInfo_struct) : integer;

PowerBASIC
MSFL1_GetNextSecurityInfo(BYVAL hSecurity AS DWORD,
psSecurityInfo AS MSFLSecurityInfo_struct) As Long

Locking
• None
Return Values
• MSFL_MSG_LAST_SECURITY_IN_DIR if successful and this security is the last

security in the directory
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if there are no more securities in the

directory
Parameters

Remarks
• Gets the security information for the next security in the directory.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary securities.

See Also
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetPrevSecurityInfo (page 109)
• MSFL1_GetSecurityCount (page 111)
• MSFL1_GetSecurityInfo (page 113)
• MSFL2_GetSecurityHandles (page 125)

ID Description
hSecurity Identifies the security. If the handle is zero, the current directory and

position from the last call to any one of the MSFL1_GetxxxxSecurityInfo
functions is used. This allows the application to step through the list of
securities by repeated calls to this function.

psSecurityInfo Points to an MSFLSecurityInfo_struct structure (page 82) that receives
the security information. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetNextSecurityInfo.

MetaStock® MetaStock File Library (MSFL) • 109

MSFL1_GetPrevSecurityInfo
C

int MSFL1_GetPrevSecurityInfo(HSECURITY hSecurity,
MSFLSecurityInfo_struct *psSecurityInfo)

Visual Basic
MSFL1_GetPrevSecurityInfo(ByVal hSecurity As Long,
psSecurityInfo As MSFLSecurityInfo_struct) As Long

Delphi
MSFL1_GetPrevSecurityInfo(hSecurity : HSECURITY;
Var psSecurityInfo : MSFLSecurityInfo_struct) : integer;

PowerBASIC
MSFL1_GetPrevSecurityInfo(BYVAL hSecurity AS DWORD,
psSecurityInfo AS MSFLSecurityInfo_struct) As Long

Locking
• None
Return Values
• MSFL_MSG_FIRST_SECURITY_IN_DIR if successful and this security is the

first security in the directory
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if there are no more securities in the

directory
Parameters

Remarks
• Gets the security information for the previous security in the directory.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates and times
for composite securities may not reflect changes made to the primary or secondary
securities.

See Also
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetSecurityCount (page 111)
• MSFL1_GetSecurityInfo (page 113)
• MSFL2_GetSecurityHandles (page 125)

ID Description
hSecurity Identifies the security. If the handle is zero, the current directory and

position from the last call to any one of the MSFL1_GetxxxxSecurityInfo
functions is used. This allows the application to step through the list of
securities by repeated calls to this function.

psSecurityInfo Points to an MSFLSecurityInfo_struct structure (page 82) that receives
the security information. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetPrevSecurityInfo.

110 • MetaStock File Library (MSFL) MetaStock®

MSFL1_GetRecordCountForDateRange
C

int MSFL1_GetRecordCountForDateRange(HSECURITY hSecurity,
const DateTime_struct *psFirstDate,
const DateTime_struct *psLastDate,
WORD *pwNumOfDataRecs)

Visual Basic
MSFL1_GetRecordCountForDateRange(ByVal hSecurity As Long,
psFirstDate As DateTime_struct,
psLastDate As DateTime_struct,
pwNumOfDataRecs As Integer) As Long

Delphi
MSFL1_GetRecordCountForDateRange(hSecurity : HSECURITY;
const psFirstDate : DateTime_struct;
const psLastDate : DateTime_struct;
Var pwNumOfDataRecs : word) : integer;

PowerBASIC
MSFL1_GetRecordCountForDateRange(BYVAL hSecurity AS DWORD,
psFirstDate AS DateTime_struct,
psLastDate AS DateTime_struct,
pwNumOfDataRecs As Word) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records
Parameters

Remarks
• Gets the number of price records within a date range.
• For composite securities, the number of price records returned is an estimate. The

actual number of records will be equal to or less than what is reported by this
function.

See Also
• MSFL1_GetDataRecordCount (page 97)

ID Description
hSecurity Identifies the security.
psFirstDate Points to a DateTime_struct structure (page 81) that specifies the

date/time of the first record in the date range.
psLastDate Points to a DateTime_struct structure (page 81) that specifies the

date/time of the last record in the date range.
pwNumOfDataRecs Points to a WORD that receives the number of price records within

the specified date range.

MetaStock® MetaStock File Library (MSFL) • 111

MSFL1_GetSecurityCount
C

int MSFL1_GetSecurityCount(char cDirNumber,
DWORD *pdwNumOfSecurities)

Visual Basic
MSFL1_GetSecurityCount(ByVal cDirNumber As Byte,
pdwNumOfSecurities As Long) As Long

Delphi
MSFL1_GetSecurityCount(cDirNumber : char;
Var pdwNumOfSecurities : DWORD) : integer;

PowerBASIC
MSFL1_GetSecurityCount(BYVAL cDirNumber AS BYTE,
pdwNumOfSecurities AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the directory is not open
• MSFL_ERR_NOT_A_MS_DIR if the directory does not contain MetaStock files
Parameters

Remarks
• Gets the number of securities in the directory.
See Also
• MSFL1_GetDirectoryStatus (page 100)

MSFL1_GetSecurityHandle
C

int MSFL1_GetSecurityHandle(MSFLSecurityIdentifier_struct
*psSecurityID,
HSECURITY *phSecurity)

Visual Basic
MSFL1_GetSecurityHandle(psSecurityID
As MSFLSecurityIdentifier_struct,
phSecurity As Long) As Long

Delphi
MSFL1_GetSecurityHandle(const psSecurityID :
MSFLSecurityIdentifier_struct;
Var phSecurity : HSECURITY) : integer;

PowerBASIC
MSFL1_GetSecurityHandle(psSecurityID AS
MSFLSecurityIdentifier_struct,
phSecurity AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the security is not found

ID Description
cDirNumber Identifies the directory.
pdwNumOfSecurities Points to the DWORD that receives the number of securities in the

specified directory.

112 • MetaStock File Library (MSFL) MetaStock®

Parameters

Remarks
• Gets the security handle for the specified security.
See Also
• MSFL1_GetSecurityID (page 112)
• MSFL2_GetSecurityHandles (page 125)

MSFL1_GetSecurityID
C

int MSFL1_GetSecurityID(HSECURITY hSecurity,
MSFLSecurityIdentifier_struct *psSecurityID)

Visual Basic
MSFL1_GetSecurityID(ByVal hSecurity As Long,
psSecurityID As MSFLSecurityIdentifier_struct) As Long

Delphi
MSFL1_GetSecurityID(hSecurity : HSECURITY;
Var psSecurityID : MSFLSecurityIdentifier_struct) :
integer;

PowerBASIC
MSFL1_GetSecurityID(BYVAL hSecurity AS DWORD,
psSecurityID AS MSFLSecurityIdentifier_struct) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the security has been deleted or if the

handle is invalid
Parameters

Remarks
• Gets the security identifier for the specified security.
• The MSFLSecurityIdentifier_struct structure is defined as follows.
typedef struct
{

DWORD dwTotalSize;
char cDirNumber;
char szSymbol[MSFL_MAX_SYMBOL_LENGTH+1];
char cPeriodicity;
WORD wInterval;
BOOL bComposite;
char szCompSymbol[MSFL_MAX_SYMBOL_LENGTH+1];
char cCompOperator;

} MSFLSecurityIdentifier_struct;

ID Description
psSecurityID Points to an MSFLSecurityIdentifier_struct structure that specifies the

security. The dwTotalSize member must be set to the structure size before
calling MSFL1_GetSecurityHandle.

phSecurity Points to an HSECURITY that receives the security handle for the
specified security.

ID Description
hSecurity Identifies the security.
psSecurityID Points to an MSFLSecurityIdentifier_struct structure (page 112) that

receives the security identifier. The dwTotalSize member must be set to
the structure size before calling MSFL1_GetSecurityID.

MetaStock® MetaStock File Library (MSFL) • 113

Fields

See Also
• MSFL1_GetSecurityHandle (page 111)
• MSFL2_GetSecurityHandles (page 125)

MSFL1_GetSecurityInfo
C

int MSFL1_GetSecurityInfo(HSECURITY hSecurity,
MSFLSecurityInfo_struct *psSecurityInfo)

Visual Basic
MSFL1_GetSecurityInfo(ByVal hSecurity As Long,
psSecurityInfo As MSFLSecurityInfo_struct) As Long

Delphi
MSFL1_GetSecurityInfo(hSecurity : HSECURITY;
Var psSecurityInfo : MSFLSecurityInfo_struct) : integer;

PowerBASIC
MSFL1_GetSecurityInfo(BYVAL hSecurity AS DWORD,
psSecurityInfo AS MSFLSecurityInfo_struct) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the security has been deleted or if the

handle is invalid

ID Description
dwTotalSize The size of the structure, in bytes.
cDirNumber The directory number returned by the MSFL1_OpenDirectory

(page 119) function.
szSymbol The security’s ticker symbol. If this security is a composite, this is the

symbol of the primary security. The maximum length of the symbol, not
including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cPeriodicity The periodicity of the security (i.e. “D”aily, “W”eekly, “M”onthly, or
“I”ntraday). The valid periodicity’s are defined, in a string, by
MSFL_VALID_PERIODICITIES.

wInterval The intraday interval of the security. This field indicates the interval, in
minutes, between price data. For tick data and non-intraday securities,
this field is set to zero. The minimum interval is defined by
MSFL_MIN_INTERVAL and the maximum interval is defined by
MSFL_MAX_INTERVAL.

bComposite Boolean value indicating if the security is a composite.
szCompSymbol The symbol of the secondary security in the composite. If this security is

not a composite, szCompSymbol is a null string. The maximum length
of the symbol, not including the terminating null, is defined by
MSFL_MAX_SYMBOL_LENGTH.

cCompOperator The composite operator (i.e. the mathematical operation to perform
between the two securities in the composite: +, -, *, /). The valid
operators are defined, in a string, by MSFL_VALID_OPERATORS. If
the security is not a composite, it is zero.

114 • MetaStock File Library (MSFL) MetaStock®

Parameters

Remarks
• Gets the security information for the specified security.

Note: If the security is not locked when calling this function, the security information returned may
not reflect changes made by another user. In addition, the starting and ending dates for
composite securities may not reflect changes made to the primary or secondary securities.

See Also
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetPrevSecurityInfo (page 109)
• MSFL2_GetSecurityHandles (page 125)

MSFL1_GetSecurityLockedStatus
C

int MSFL1_GetSecurityLockedStatus(HSECURITY hSecurity,
int *piLockStatus,
UINT *puiLockType)

Visual Basic
MSFL1_GetSecurityLockedStatus(ByVal hSecurity As Long,
piLockStatus As Long,
puiLockType As Long) As Long

Delphi
MSFL1_GetSecurityLockedStatus(hSecurity : HSECURITY;
Var piLockStatus : integer;
Var puiLockType : UINT) : integer;

PowerBASIC
MSFL1_GetSecurityLockedStatus(BYVAL hSecurity AS DWORD,
piLockStatus As Long,
puiLockType AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_FOUND if the security could not be found

ID Description
hSecurity Identifies the security.
psSecurityInfo Points to the MSFLSecurityInfo_struct structure (page 82) that receives

the security information. The dwTotalSize member must be set to the
structure size before calling MSFL1_GetSecurityInfo.

MetaStock® MetaStock File Library (MSFL) • 115

Parameters

Remarks
• Gets the lock status of the specified security.
See Also
• MSFL1_LockSecurity (page 116)
• MSFL1_UnlockSecurity (page 124)

MSFL1_Initialize
C

int MSFL1_Initialize(LPCSTR pszAppName,
LPCSTR pszUserName,
int iInterfaceVersion)

Visual Basic
MSFL1_Initialize(ByVal pszAppName As String,
ByVal pszUserName As String,
ByVal iInterfaceVersion As Long) As Long

Delphi
MSFL1_Initialize(pszAppName : LPCSTR;
pszUserName : LPCSTR;
iInterfaceVersion: integer) : integer;

PowerBASIC
MSFL1_Initialize(pszAppName AS ASCIIZ,
pszUserName AS ASCIIZ,
BYVAL iInterfaceVersion As Long) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_ALREADY_INITIALIZED if the MSFL is currently initialized
• MSFL_ERR_INSUFFICIENT_MEM if there is insufficient memory to initialize

the MSFL
• MSFL_ERR_INVALID_USER_ID if the application name and/or user name are

invalid

ID Description
hSecurity Identifies the security.
piLockStatus Points to an integer that receives the lock status.

Following are the possible lock status codes.
• MSFL_LOCK_STATUS_UNLOCKED

The security is not locked by this user or any other user.
• MSFL_LOCK_STATUS_LOCKED_CURRENT

The security is locked by this user.
• MSFL_LOCK_STATUS_LOCKED_OTHER

The security is locked by another user.
• MSFL_LOCK_STATUS_LOCKED_COMP_CUR

The security is locked as part of a composite security by this user.
• MSFL_LOCK_STATUS_LOCKED_COMP_OTH

The security is locked as part of a composite security by another user.
puiLockType Points to an UINT that receives the lock type. Following are the possible

lock types.
• MSFL_LOCK_PREV_WRITE_LOCK

The security is prevent write locked.
• MSFL_LOCK_WRITE_LOCK

The security is write locked.
• MSFL_LOCK_FULL_LOCK

The security is full locked.

116 • MetaStock File Library (MSFL) MetaStock®

Parameters

Remarks
• Initializes the MetaStock File Library by creating the internal tables and buffers.

Once the MSFL is successfully initialized, it cannot be initialized again without first
shutting down. Also, if the application successfully initializes the MSFL, it must shut
down the MSFL (via MSFL1_Shutdown (page 124) before exiting. Failure to do so
may cause corruption of files and memory leaks. It may also keep directories open
and securities locked.

• The application and user names constitute the MSFL user ID. The MSFL user ID is
used to distinguish between users in a data directory. By including the application
name, the same user can access the same directory with two different applications
(e.g. MetaStock and The DownLoader).

Note: Before calling this function, you must setup the key structure as documented in the
Initialization section (page 87).

See Also
• MSFL1_GetMSFLState (page 107)
• MSFL1_Shutdown (page 124)

MSFL1_LockSecurity
C

int MSFL1_LockSecurity(HSECURITY hSecurity,
UINT uiLockType)

Visual Basic
MSFL1_LockSecurity(ByVal hSecurity As Long,
ByVal uiLockType As Long) As Long

Delphi
MSFL1_LockSecurity(hSecurity : HSECURITY;
uiLockType : UINT) : integer;

PowerBASIC
MSFL1_LockSecurity(BYVAL hSecurity AS DWORD,
BYVAL uiLockType AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_TOO_MANY_SEC_LOCKED if the application attempted to lock

more than the maximum number of securities
(i.e. MSFL_MAX_LOCKED_SECURITIES)

• MSFL_ERR_SECURITY_LOCKED if the security is locked by this or another
application

ID Description
pszAppName Points to a null-terminated string that contains the application name.

The maximum length of the application name is defined by
MSFL_MAX_APP_NAME_LENGTH.

pszUserName Points to a null-terminated string that contains the user name.
The maximum length of the user name is defined by
MSFL_MAX_USER_NAME_LENGTH.

iInterfaceVersion Indicates the MSFL DLL interface version. The current DLL interface
version is defined by MSFL_DLL_INTERFACE_VERSION and can
simply be passed into the MSFL1_Initialize function.

MetaStock® MetaStock File Library (MSFL) • 117

Parameters

Remarks
• Locks the specified security. For more information on security locking and the lock

types, see Security Locking (page 87).
• An application cannot concurrently lock the same security multiple times. Nor can an

application lock more than the maximum number of locked securities per application
(i.e. MSFL_MAX_LOCKED_SECURITIES).

Note: When locking composite securities, the primary and secondary securities are also locked.
In addition, composite securities cannot be write locked.

See Also
• MSFL1_GetLastFailedLockInfo (page 105)
• MSFL1_GetSecurityLockedStatus (page 114)
• MSFL1_UnlockSecurity (page 124)

MSFL1_MakeMSFLDate
C

int MSFL1_MakeMSFLDate(long *plDate,
WORD wMonth,
WORD wDay,
WORD wYear);

Visual Basic
MSFL1_MakeMSFLDate(plDate As Long,
ByVal wMonth As Integer,
ByVal wDay As Integer,
ByVal wYear As Integer) As Long

Delphi
MSFL1_MakeMSFLDate(Var plDate : longint;
wMonth : word;
wDay : word;
wYear : word) : integer;

PowerBASIC
MSFL1_MakeMSFLDate(plDate As Long,
BYVAL wMonth As Word,
BYVAL wDay As Word,
BYVAL wYear As Word) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_DATE if the constructed date is invalid
Parameters

ID Description
hSecurity Identifies the security to lock.
uiLockType Specifies the lock type. Applications reading MetaStock price data can

simply pass MSFL_LOCK_PREV_WRITE_LOCK.

ID Description
plDate Points to a long that receives the MSFL date.
wMonth The month; January = 1, February = 2, and so on.
wDay The day of the month.

118 • MetaStock File Library (MSFL) MetaStock®

Remarks
• Constructs an MSFL date from its components: day, month and year.
See Also
• MSFL1_FormatDate (page 94)
• MSFL1_GetDayMonthYear (page 98)
• MSFL1_MakeMSFLTime (page 118),
• MSFL1_ParseDateString (page 120)

MSFL1_MakeMSFLTime
C

int MSFL1_MakeMSFLTime(long *plTime,
WORD wHour,
WORD wMin,
WORD wTicks);

Visual Basic
MSFL1_MakeMSFLTime(plTime As Long,
ByVal wHour As Integer,
ByVal wMin As Integer,
ByVal wTicks As Integer) As Long

Delphi
MSFL1_MakeMSFLTime(Var plTime : longint;
wHour : word;
wMin : word;
wTicks : word) : integer;

PowerBASIC
MSFL1_MakeMSFLTime(plTime As Long,
BYVAL wHour As Word,
BYVAL wMin As Word,
BYVAL wTicks As Word) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_TIME if the constructed time is invalid
Parameters

Remarks
• Constructs an MSFL time from its components: hour, minutes and ticks.

wYear The year. The year can be two or four digits. If the year is two digits, the
Windows cutoff year is used to determine the century. If the Windows cutoff
year is not found in the registry, a default cutoff year of twenty-nine is used.
In other words, if the two-digit year is less than or equal to twenty-nine,
MSFL1_MakeMSFLDate (page 117) will assume the century to be 2000.
If the two-digit year is greater than twenty-nine, a century of 1900 will be
assumed.

ID Description
plTime Points to a long that receives the MSFL time.
wHour The hour; must be in 24-hour format.
wMin The minutes.
wTicks The ticks. In cases where the ticks are unknown or not relevant, pass in zero for

the ticks.

ID Description

MetaStock® MetaStock File Library (MSFL) • 119

See Also
• MSFL1_FormatTime (page 95)
• MSFL1_GetHourMinTicks (page 104)
• MSFL1_MakeMSFLDate (page 117)
• MSFL1_ParseTimeString (page 121)

MSFL1_OpenDirectory
C

int MSFL1_OpenDirectory(LPCSTR pszDirectory,
char *pcDirNumber,
int iDirOpenFlags)

Visual Basic
MSFL1_OpenDirectory(ByVal pszDirectory As String,
pcDirNumber As Byte,
ByVal iDirOpenFlags As Long) As Long

Delphi
MSFL1_OpenDirectory(pszDirectory : LPCSTR;
Var pcDirNumber : char;
iDirOpenFlags : integer) : integer;

PowerBASIC
MSFL1_OpenDirectory(pszDirectory AS ASCIIZ,
pcDirNumber AS BYTE,
BYVAL iDirOpenFlags As Long) As Long

Locking
• None
Return Values
• MSFL_MSG_NOT_A_METASTOCK_DIR if successful, but the directory does

not contain MetaStock files
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_ALREADY_OPEN if the application has the directory open and

the MSFL_DIR_ALLOW_MULTI_OPEN flag was not passed to the open file
• MSFL_ERR_DIR_DOES_NOT_EXIST if the directory does not exist
• MSFL_ERR_DUPLICATE_SECURITIES if there are duplicate securities in the

directory and the MSFL_DIR_MERGE_DUP_SECS flag was not passed to the open
• MSFL_ERR_INVALID_DIR if the directory is invalid
• MSFL_ERR_TOO_MANY_DIRS_OPEN if the application has opened the

maximum number of directories (i.e. MSFL_MAX_OPEN_DIRECTORIES)
• MSFL_ERR_USER_ID_ALREADY_IN_DIR if a user with the same application

and user name has the directory open and the MSFL_DIR_FORCE_USER_IN flag
was not passed to the open

Parameters
ID Description
pszDirectory Points to a null-terminated string that contains the directory to open.
pcDirNumber Points to a character that receives the directory number. The directory

number can be thought of a handle to the open directory. If the open fails,
the directory number is set to zero.

120 • MetaStock File Library (MSFL) MetaStock®

Remarks
• Opens the specified directory.
• Directories that do not contain MetaStock files can be opened; however, the

MSFL_MSG_NOT_A_METASTOCK_DIR message is returned and any MSFL
functions that operate with security or price data cannot be used.

• The number of concurrent open directories is limited to
MSFL_MAX_OPEN_DIRECTORIES.

See Also
• MSFL1_CloseDirectory (page 92)
• MSFL1_GetDirectoryNumber (page 99)
• MSFL1_GetDirectoryStatus (page 100)
• MSFL1_GetLastFailedOpenDirInfo (page 106)

MSFL1_ParseDateString
C

int MSFL1_ParseDateString(long *plDate,
LPCSTR pszDateString);

Visual Basic
MSFL1_ParseDateString(plDate As Long,
ByVal pszDateString As String) As Long

Delphi
MSFL1_ParseDateString(Var plDate : longint;
pszDateString : LPCSTR):integer;

PowerBASIC
MSFL1_ParseDateString(plDate As Long,
pszDateString AS ASCIIZ) As Long

iDirOpenFlags Specifies the open flags. The flags provide additional tasks to perform
while opening the directory. Many of the tasks are provided to recover
from common errors. Multiple flags can be passed in by simply bitwise
OR-ing the flags (e.g. MSFL_DIR_ALLOW_MULTI_OPEN |
MSFL_DIR_MERGE_DUP_SECS). The MSFL_DIR_NO_FLAGS is
ignored when any other flags are used; the remaining flags can be used in
any combination.
Following is a list of the available directory open flags.
• MSFL_DIR_NO_FLAGS Standard directory open. Return an error if the

directory doesn’t exist, if the user is already in the directory, or if there are
duplicate securities in the directory.

• MSFL_DIR_FORCE_USER_IN Open a directory that is already open by
a user with the same application and user name. This situation can occur if
the application terminated without closing the directory or if another user
on the network is using the application with the same user name. This flag
should only be used in response to the
MSFL_ERR_USER_ID_ALREADY_IN_DIR error.

• MSFL_DIR_MERGE_DUP_SECS If the directory contains duplicate
securities, merge the price data for all the duplicate securities. This flag is
generally used in response to the
MSFL_ERR_DUPLICATE_SECURITIES error.

• MSFL_DIR_ALLOW_MULTI_OPEN Allows the application to open the
same directory multiple times. The MSFL keeps reference count – each
time the directory is opened the reference count is incremented, each time
the directory is closed the reference count is decremented. When the
reference count is equal to zero, the directory is closed.

ID Description

MetaStock® MetaStock File Library (MSFL) • 121

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_DATE if the constructed date is invalid
• MSFL_ERR_INVALID_FUNC_PARMS if either parameter is null
Parameters

Remarks
• Constructs an MSFL date from the date string. The year can be two or four digits.

If the year is two digits, the Windows cutoff year is used to determine the century.
If the Windows cutoff year is not found in the registry, a default cutoff year of
twenty-nine is used. In other words, if the two-digit year is less than or equal to
twenty-nine, MSFL1_ParseDateString will assume the century to be 2000.
If the two-digit year is greater than twenty-nine, a century of 1900 will be assumed.

See Also
• MSFL1_FormatDate (page 94)
• MSFL1_GetDayMonthYear (page 98)
• MSFL1_MakeMSFLDate (page 117)
• MSFL1_ParseTimeString (page 121)

MSFL1_ParseTimeString
C

int MSFL1_ParseTimeString(long *plTime,
LPCSTR pszTimeString);

Visual Basic
MSFL1_ParseTimeString(plTime As Long,
ByVal pszTimeString As String) As Long

Delphi
MSFL1_ParseTimeString(Var lTime : longint;
pszTimeString : LPCSTR) : integer;

PowerBASIC
MSFL1_ParseTimeString(plTime As Long,
pszTimeString AS ASCIIZ) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_TIME if the constructed time is invalid
• MSFL_ERR_INVALID_FUNC_PARMS if either parameter is null
Parameters

ID Description
plDate Points to a long that receives the MSFL date.
pszDateString Points to a null-terminated string that contains the date. The date must be

formatted according to the Windows short date format and use the same date
separator (e.g., ‘/’).

ID Description
plTime Points to a long that receives the MSFL time.
pszTimeString Points to a null-terminated string that contains the time. The time must be

formatted according to the Windows time format and use the same time
separator (e.g., ‘:’).

122 • MetaStock File Library (MSFL) MetaStock®

Remarks
• Constructs an MSFL time from the time string. If the time is read right-to-left, all

fields must be present (i.e., the ticks/seconds, minutes, hours). If the time is read left-
to-right, the minutes and ticks/seconds are optional. The time may be in either 24-
hour format or 12-hour format. If the time is in 12-hour format, the PM symbol must
be included in the time string.

See Also
• MSFL1_FormatTime (page 95)
• MSFL1_GetHourMinTicks (page 104)
• MSFL1_MakeMSFLTime (page 118),
• MSFL1_ParseDateString (page 120)

MSFL1_ReadDataRec
C

int MSFL1_ReadDataRec(HSECURITY hSecurity,
MSFLPriceRecord_struct *psPriceRec)

Visual Basic
MSFL1_ReadDataRec(ByVal hSecurity As Long,
psPriceRec As MSFLPriceRecord_struct) As Long

Delphi
MSFL1_ReadDataRec(hSecurity : HSECURITY;
Var psPriceRec : MSFLPriceRecord_struct) : integer;

PowerBASIC
MSFL1_ReadDataRec(BYVAL hSecurity AS DWORD,
psPriceRec AS MSFLPriceRecord_struct) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_END_OF_FILE if the current data position is past the end of the file
Parameters

Remarks
• Reads the price record at the current data position.

If successful, the current data position is advanced to the next record.
See Also
• MSFL2_ReadBackMultipleRecs (page 126)
• MSFL2_ReadDataRec (page 127)
• MSFL2_ReadMultipleRecs (page 128)
• MSFL2_ReadMultipleRecsByDates (page 129)

ID Description
hSecurity Identifies the security.
psPriceRec Points to an MSFLPriceRecord_struct structure (page 84) that receives

the price record.

MetaStock® MetaStock File Library (MSFL) • 123

MSFL1_SeekBeginData
C

int MSFL1_SeekBeginData(HSECURITY hSecurity)

Visual Basic
MSFL1_SeekBeginData(ByVal hSecurity As Long) As Long

Delphi
MSFL1_SeekBeginData(hSecurity : HSECURITY) : integer;

PowerBASIC
MSFL1_SeekBeginData(BYVAL hSecurity AS DWORD) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

Remarks
• Moves the current data position to the first price record.

Unlike MSFL1_SeekEndData, this function can be used with composite securities.
See Also
• MSFL1_FindDataDate (page 92)
• MSFL1_FindDataRec (page 93)
• MSFL1_GetCurrentDataPos (page 96)
• MSFL1_SeekEndData (page 123)

MSFL1_SeekEndData
C

int MSFL1_SeekEndData(HSECURITY hSecurity)

Visual Basic
MSFL1_SeekEndData(ByVal hSecurity As Long) As Long

Delphi
MSFL1_SeekEndData(hSecurity : HSECURITY) : integer;

PowerBASIC
MSFL1_SeekEndData(BYVAL hSecurity AS DWORD) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters

Remarks
• Moves the current data position to the end of the price data. This function is generally

used to move the current data position in preparation for appending price records.

Note: This function cannot be used with composite securities.

ID Description
hSecurity Identifies the security.

ID Description
hSecurity Identifies the security.

124 • MetaStock File Library (MSFL) MetaStock®

See Also
• MSFL1_FindDataDate (page 92)
• MSFL1_FindDataRec (page 93)
• MSFL1_GetCurrentDataPos (page 96)
• MSFL1_SeekBeginData (page 123)

MSFL1_Shutdown
C

int MSFL1_Shutdown(void)

Visual Basic
MSFL1_Shutdown() As Long

Delphi
MSFL1_Shutdown : integer;

PowerBASIC
MSFL1_Shutdown() As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_NOT_INITIALIZED if the MSFL is not initialized
Parameters
• None
Remarks
• Shuts down the previously initialized MetaStock file library. During shutdown, all

open files are closed and the internal tables and buffers are freed.
See Also
• MSFL1_GetMSFLState (page 107)
• MSFL1_Initialize (page 115)

MSFL1_UnlockSecurity
C

int MSFL1_UnlockSecurity(HSECURITY hSecurity)

Visual Basic
MSFL1_UnlockSecurity(ByVal hSecurity As Long) As Long

Delphi
MSFL1_UnlockSecurity(hSecurity : HSECURITY) : integer;

PowerBASIC
MSFL1_UnlockSecurity(BYVAL hSecurity AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_SECURITY_NOT_LOCKED if the security is not locked
Parameters
ID Description
hSecurity Identifies the security to unlock.

MetaStock® MetaStock File Library (MSFL) • 125

Remarks
• Unlocks the specified security.
• When the security is unlocked, any changes to the security information (e.g. first date, last

date, security name, etc.) are saved to the security file. All associated files are closed.
See Also
• MSFL1_GetSecurityLockedStatus (page 114)
• MSFL1_LockSecurity (page 116)

 MSFL2_GetSecurityHandles
C

int MSFL2_GetSecurityHandles(char cDirNumber,
HSECURITY hStartingSecurity,
DWORD dwMaxHandles,
HSECURITY *pahSecurity,
DWORD *pdwHandleCount)

Visual Basic
MSFL2_GetSecurityHandles(ByVal cDirNumber As Byte,
ByVal hStartingSecurity As Long,
ByVal dwMaxHandles As Long,
pahSecurity As Long,
pdwHandleCount As Long) As Long

Delphi
MSFL2_GetSecurityHandles(cDirNumber : char;
hStartingSecurity : HSECURITY;
dwMaxHandles : DWORD;
Var pahSecurity : HSECURITY;
Var pdwHandleCount : DWORD) : integer;

PowerBASIC
MSFL2_GetSecurityHandles(BYVAL cDirNumber AS BYTE,
BYVAL hStartingSecurity As Long,
BYVAL dwMaxHandles AS DWORD,
pahSecurity AS DWORD,
pdwHandleCount AS DWORD) As Long

Locking
• None
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_DIR_NOT_OPEN if the directory is not open
• MSFL_ERR_INVALID_SECURITY_HANDLE if the starting security handle is

invalid
Parameters
ID Description
cDirNumber Identifies the directory.
hStartingSecurity Identifies the first security of the block. To start at the first security in

a directory, the handle can be set to zero or to the security handle of
the first security. Otherwise, it must be set to a valid security handle
within the directory.

dwMaxHandles Specifies the maximum number of handles to be stored in the array
pointed to by pahSecurity.

pahSecurity Points to an array of HSECURITY that receives the block of security
handles.

pdwHandleCount Points to a DWORD that receives the actual number of handles
returned in the array pointed to by pahSecurity.

126 • MetaStock File Library (MSFL) MetaStock®

Remarks
• Gets the security handles for a block of securities.
See Also
• MSFL1_GetFirstSecurityInfo (page 103)
• MSFL1_GetLastSecurityInfo (page 106)
• MSFL1_GetNextSecurityInfo (page 108)
• MSFL1_GetPrevSecurityInfo (page 109)
• MSFL1_GetSecurityCount (page 111)
• MSFL1_GetSecurityInfo (page 113)

MSFL2_ReadBackMultipleRecs
C

int MSFL2_ReadBackMultipleRecs(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psLastRecDate,
WORD *pwReadCount,
int iFindMode)

Visual Basic
MSFL2_ReadBackMultipleRecs(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psLastRecDate As DateTime_struct,
pwReadCount As Integer,
ByVal iFindMode As Long) As Long

Delphi
MSFL2_ReadBackMultipleRecs(hSecurity : HSECURITY;
Var pasPriceRec: MSFLPriceRecord_struct;
const psLastRecDate : DateTime_struct;
Var pwReadCount : word;
iFindMode : integer) : integer;

PowerBASIC
MSFL2_ReadBackMultipleRecs(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psLastRecDate AS DateTime_struct,
pwReadCount As Word,
BYVAL iFindMode As Long) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_MSG_LESS_RECORDS_READ if successful, but fewer records were read

than requested
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_RECORDS if the read count is invalid
• MSFL_ERR_END_OF_FILE if the current data position is past the end of the file
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records
Parameters
ID Description
hSecurity Identifies the security.
pasPriceRec Points to an MSFLPriceRecord_struct structure (page 84) array that

receives the price records.
psLastRecDate Points to a DateTime_struct structure (page 81) that contains the

date/time of the record at which to start reading.

MetaStock® MetaStock File Library (MSFL) • 127

Remarks
• Reads backward from the specified date/time for the specified number of price

records. If successful, the current data position is set to the previous record. Since this
function reads backward the data position is set to the previous record rather than the
next record.

See Also
• MSFL1_ReadDataRec (page 122)
• MSFL2_ReadDataRec (page 127)
• MSFL2_ReadMultipleRecs (page 128)
• MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ReadDataRec
C

int MSFL2_ReadDataRec(HSECURITY hSecurity,
const DateTime_struct *psRecordDate,
MSFLPriceRecord_struct *psPriceRec,
int iFindMode)

Visual Basic
MSFL2_ReadDataRec(ByVal hSecurity As Long,
psRecordDate As DateTime_struct,
psPriceRec As MSFLPriceRecord_struct,
ByVal iFindMode As Long) As Long

Delphi
MSFL2_ReadDataRec(hSecurity : HSECURITY;
const psRecordDate : DateTime_struct;
Var psPriceRec : MSFLPriceRecord_struct;
iFindMode : integer) : integer;

PowerBASIC
MSFL2_ReadDataRec(BYVAL hSecurity AS DWORD,
psRecordDate AS DateTime_struct,
psPriceRec AS MSFLPriceRecord_struct,
BYVAL iFindMode As Long) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_NO_ERR if successful
• MSFL_ERR_END_OF_FILE if the current data position is past the end of the file
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records

pwReadCount Points to a WORD that contains the number of records to read. It also
receives the actual number of records read. The maximum records that can
be read per call is limited to MSFL_MAX_READ_WRITE_RECORDS.

iFindMode Indicates what type of search to perform to locate the price record at
which to start reading.
Following are the different modes available.
• MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
• MSFL_FIND_CLOSEST_NEXT I

f an exact match is not found, find the next closest record.
• MSFL_FIND_EXACT_MATCH

Find an exact date/time match.
• MSFL_FIND_USE_CURRENT_POS

Skip the find and use the current position. When this mode is used, the
contents of psLastRecDate are ignored.

ID Description

128 • MetaStock File Library (MSFL) MetaStock®

Parameters

Remarks
• Reads a price record for the specified date/time.

This function is equivalent to calling MSFL1_FindDataDate (page 92) to find the
date/time and then calling MSFL1_ReadDataRec (page 122) to read the price record.

See Also
• MSFL1_ReadDataRec (page 122)
• MSFL2_ReadBackMultipleRecs (page 126)
• MSFL2_ReadMultipleRecs (page 128)
• MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ReadMultipleRecs
C

int MSFL2_ReadMultipleRecs(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psFirstRecDate,
WORD *pwReadCount,
int iFindMode)

Visual Basic
MSFL2_ReadMultipleRecs(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psFirstRecDate As DateTime_struct,
pwReadCount As Integer,
ByVal iFirstFindMode As Long) As Long

Delphi
MSFL2_ReadMultipleRecs(hSecurity : HSECURITY;
Var pasPriceRec : MSFLPriceRecord_struct;
const psFirstRecDate : DateTime_struct;
Var pwReadCount : word;
iFindMode : integer) : integer;

PowerBASIC
MSFL2_ReadMultipleRecs(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psFirstRecDate AS DateTime_struct,
pwReadCount As Word,
BYVAL iFindMode As Long) As Long

Locking
• Prevent Write Lock

ID Description
hSecurity Identifies the security.
psRecordDate Points to a DateTime_struct structure (page 81) that contains the

date/time of the record to read.
psPriceRec Points to an MSFLPriceRecord_struct structure (page 84) that receives

the price record.
iFindMode Indicates what type of search to perform to locate the price record to read.

Following are the different modes available.
• MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
• MSFL_FIND_CLOSEST_NEXT

If an exact match is not found, find the next closest record.
• MSFL_FIND_EXACT_MATCH

Find an exact date/time match.
• MSFL_FIND_USE_CURRENT_POS

Skip the find and use the current position. When this mode is used, the
contents of psRecordDate are ignored.

MetaStock® MetaStock File Library (MSFL) • 129

Return Values
• MSFL_MSG_LESS_RECORDS_READ if successful, but fewer records were read

than requested
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_RECORDS if the read count is invalid
• MSFL_ERR_END_OF_FILE if the current data position is past the end of the file
• MSFL_ERR_SECURITY_HAS_NO_DATA if the security has no price records
Parameters

Remarks
• Reads the number of price records indicated. If successful, the current data position is

set to the next price record.
See Also
• MSFL1_ReadDataRec (page 122)
• MSFL2_ReadBackMultipleRecs (page 126)
• MSFL2_ReadDataRec (page 127)
• MSFL2_ReadMultipleRecsByDates (page 129)

MSFL2_ReadMultipleRecsByDates
C

int MSFL2_ReadMultipleRecsByDates(HSECURITY hSecurity,
MSFLPriceRecord_struct *pasPriceRec,
const DateTime_struct *psFirstRecDate,
const DateTime_struct *psLastRecDate,
WORD *pwMaxReadCount,
int iFirstFindMode)

Visual Basic
MSFL2_ReadMultipleRecsByDates(ByVal hSecurity As Long,
pasPriceRec As MSFLPriceRecord_struct,
psFirstRecDate As DateTime_struct,
psLastRecDate As DateTime_struct,
pwMaxReadCount As Integer,
ByVal iFirstFindMode As Long) As Long

ID Description
hSecurity Identifies the security.
pasPriceRec Points to an MSFLPriceRecord_struct structure (page 84) array that

receives the price records.
psFirstRecDate Points to a DateTime_struct structure (page 81) that contains the

date/time of the record at which to start reading.
pwReadCount Points to a WORD that contains the number of records to read. It also

receives the actual number of records read. The maximum records that
can be read per call is limited to
MSFL_MAX_READ_WRITE_RECORDS.

iFindMode Indicates what type of search to perform to locate the first price record to
read. Following are the different modes available.
• MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
• MSFL_FIND_CLOSEST_NEXT

If an exact match is not found, find the next closest record.
• MSFL_FIND_EXACT_MATCH

Find an exact date/time match.
• MSFL_FIND_USE_CURRENT_POS

Skip the find and use the current position. When this mode is used, the
contents of psFirstRecDate are ignored.

130 • MetaStock File Library (MSFL) MetaStock®

Delphi
MSFL2_ReadMultipleRecsByDates(hSecurity : HSECURITY;
Var pasPriceRec : MSFLPriceRecord_struct;
const psFirstRecDate : DateTime_struct;
const psLastRecDate : DateTime_struct;
Var pwMaxReadCount : word;
iFirstFindMode : integer) : integer;

PowerBASIC
MSFL2_ReadMultipleRecsByDates(BYVAL hSecurity AS DWORD,
pasPriceRec AS MSFLPriceRecord_struct,
psFirstRecDate AS DateTime_struct,
psLastRecDate AS DateTime_struct,
pwMaxReadCount As Word,
BYVAL iFirstFindMode As Long) As Long

Locking
• Prevent Write Lock
Return Values
• MSFL_MSG_LESS_RECORDS_READ if successful, but fewer records were read

than requested
• MSFL_MSG_MORE_RECORDS_IN_RANGE if successful, but there were more

records in the date range than the array could hold
• MSFL_NO_ERR if successful
• MSFL_ERR_INVALID_RECORDS if the read count is invalid
Parameters

Remarks
• Reads the price record(s) for the date range indicated. It stops reading when it reaches

a price record with a date/time greater than psLastDate or when the maximum
number of records have been read. If successful, the current data position is set to the
next price record.

See Also
• MSFL1_ReadDataRec (page 122)
• MSFL2_ReadBackMultipleRecs (page 126)
• MSFL2_ReadDataRec (page 127)
• MSFL2_ReadMultipleRecs (page 128)

ID Description
hSecurity Identifies the security.
pasPriceRec Points to an MSFLPriceRecord_struct structure (page 84) array

that receives the price records.
psFirstRecDate Points to a DateTime_struct structure (page 81) that contains the

date/time of the record at which to start reading.
psLastRecDate Points to a DateTime_struct structure (page 81) that contains the

date/time of the record at which to stop reading.
pwMaxReadCount Points to a WORD that contains the maximum number of records to

read (i.e. the maximum number of records the array can hold). It also
receives the actual number of records read.

iFirstFindMode Indicates what type of search to perform to locate the first price
record to read. Following are the different modes available.
• MSFL_FIND_CLOSEST_PREV

If an exact match is not found, find the previous closest record.
• MSFL_FIND_CLOSEST_NEXT

If an exact match is not found, find the next closest record.
• MSFL_FIND_EXACT_MATCH

Find an exact date/time match.

MetaStock® MetaStock File Library (MSFL) • 131

Messages and Errors

Error Codes
The following is a list of the possible error codes that can be returned from the MSFL
functions. On successful completion, MSFL_NO_ERR or an MSFL message code is
returned; in the event of an error, the specific MSFL error code is returned.

Note: The MSFL1_GetErrorMessage (page 102) function can be used to generate an error
message string. These are listed below.

-400: MSFL_ERR_NOT_INITIALIZED
Attempted to use an MSFL function without first initializing the MSFL.

-399: MSFL_ERR_ALREADY_INITIALIZED
Attempted to initialize the MSFL after it had already been initialized.

-398: MSFL_ERR_MSFL_CORRUPT
The MSFL or operating system is corrupt. The internal MSFL tables have been
damaged or operating system is now unstable. The MSFL must be shutdown.

-397: MSFL_ERR_OS_VER_NOT_SUPPORTED
The Windows version is below the minimum required (Windows 95 or
Windows NT 3.1).

-396: MSFL_ERR_SHARE_NOT_LOADED
File sharing is not loaded.

-395: MSFL_ERR_INSUFFICIENT_FILES
Attempted to initialize the MSFL with insufficient file handles.

-394: MSFL_ERR_INSUFFICIENT_MEM
Insufficient memory to perform requested function (i.e. the function called requires
more memory on the heap).

-393: MSFL_ERR_INVALID_USER_ID
The user name and/or application name are invalid.

-392: MSFL_ERR_INVALID_TEMP_DIR
The Windows temp directory is invalid.

-391: MSFL_ERR_DLL_INCOMPATIBLE
The MSFL DLL is incompatible with the application.

-375: MSFL_ERR_INVALID_DRIVE
The drive is invalid.

-374: MSFL_ERR_INVALID_DIR
The directory is invalid.

-373: MSFL_ERR_DIR_DOES_NOT_EXIST
Directory does not exist.

-372: MSFL_ERR_UNABLE_TO_CREATE_DIR
Unable to create the directory.

-371: MSFL_ERR_DIR_ALREADY_OPEN
Directory is already open. Attempted to open an open directory.

-370: MSFL_ERR_DIR_NOT_OPEN
Attempted to call an MSFL function with a directory that is not open.

-369: MSFL_ERR_TOO_MANY_DIRS_OPEN
The maximum number of concurrent open directories has already been reached;
opening another directory is not possible.

132 • MetaStock File Library (MSFL) MetaStock®

-368: MSFL_ERR_ALREADY_A_MS_DIR
Attempted to build MetaStock files in an existing MetaStock directory.

-367: MSFL_ERR_NOT_A_MS_DIR
The directory is not a MetaStock directory.

-366: MSFL_ERR_DIR_IS_BUSY
The files are in a state where only one user can access them.

-365: MSFL_ERR_USER_ID_ALREADY_IN_DIR
This user ID (i.e. program and user name) already has this directory open.

-364: MSFL_ERR_TOO_MANY_USERS_IN_DIR
The maximum number of users have already opened the directory.

-363: MSFL_ERR_INVALID_USER
The user is invalid because another user with the same application name and user
name opened the directory.

-362: MSFL_ERR_NON_MSFL_USER_IN_DIR
The directory is in use by a non-MSFL application, the data cannot be accessed
until the single user application is finished.

-361: MSFL_ERR_DIR_IS_READ_ONLY
The directory is read-only; therefore, the operation cannot be performed.

-360: MSFL_ERR_MAX_FILES_IN_TEMP_DIR
Too many MSFL files exist in the Windows temp directory.

-355: MSFL_ERR_INVALID_XMASTER_FILE
The XMASTER file is corrupt.

-354: MSFL_ERR_INVALID_INDEX_FILE
The index file is corrupt.

-353: MSFL_ERR_INVALID_LOCK_FILE
The lock file is corrupt.

-352: MSFL_ERR_INVALID_SECURITY_FILE
The security file is corrupt.

-351: MSFL_ERR_INVALID_USERS_FILE
The user file is corrupt.

-350: MSFL_ERR_CRC_ERROR
A CRC error occurred while accessing a file.

-349: MSFL_ERR_DRIVE_NOT_READY
The drive is not ready.

-348: MSFL_ERR_GENERAL_FAILURE
A general failure occurred while accessing the disk.

-347: MSFL_ERR_MISC_DISK_ERROR
A general disk error occurred while accessing the disk.

-346: MSFL_ERR_SECTOR_NOT_FOUND
Sector not found.

-345: MSFL_ERR_SEEK_ERROR
An error occurred while seeking in the file.

-344: MSFL_ERR_UNKNOWN_MEDIA
Unknown disk media type.

-343: MSFL_ERR_WRITE_PROTECTED
The disk is write protected.

MetaStock® MetaStock File Library (MSFL) • 133

-342: MSFL_ERR_DISK_IS_FULL
The disk is full, unable to write data.

-341: MSFL_ERR_NOT_SAME_DEVICE
The device (e.g. disk drive) has changed.

-340: MSFL_ERR_NETWORK_ERROR
A network error occurred while accessing files on the network.

-325: MSFL_ERR_LOCK_VIOLATION
Unable to unlock a locked region of a file.

-324: MSFL_ERR_INVALID_LOCK_TYPE
The lock type is an unknown type.

-323: MSFL_ERR_FILE_LOCKED
File is locked by another user.

-322: MSFL_ERR_TOO_MANY_SEC_LOCKED
The maximum number of securities are already locked – the application cannot
lock additional securities.

-321: MSFL_ERR_SECURITY_LOCKED
Security is locked by another user.

-320: MSFL_ERR_SECURITY_NOT_LOCKED
The security is not locked, but must be to perform the operation.

-319: MSFL_ERR_IMPROPER_LOCK_TYPE
The lock type is incorrect for the operation requested.

-300: MSFL_ERR_END_OF_FILE
End of the file.

-299: MSFL_ERR_ERROR_OPENING_FILE
Unable to open the file.

-298: MSFL_ERR_ERROR_READING_FILE
Error reading the file.

-297: MSFL_ERR_ERROR_WRITING_FILE
Error writing to the file.

-296: MSFL_ERR_FILE_DOESNT_EXIST
File does not exist.

-295: MSFL_ERR_INVALID_FILE_HANDLE
The file handle is invalid.

-294: MSFL_ERR_PERMISSION_DENIED
Permission to access a file was denied.

-293: MSFL_ERR_SEEK_PAST_EOF
The seek went past the end of the file.

-292: MSFL_ERR_MISC_FILE_ERROR
A miscellaneous file error occurred while accessing a file.

-275: MSFL_ERR_UNABLE_TO_READ_ALL
Unable to read all the records requested.

-274: MSFL_ERR_UNABLE_TO_WRITE_ALL
Unable to write all the records requested.

-250: MSFL_ERR_ALL_SYMB_NOT_LOADED
One or more of the symbols in the directory were invalid; thus, all of the securities
in the directory were not loaded.

134 • MetaStock File Library (MSFL) MetaStock®

-249: MSFL_ERR_UNABLE_TO_RESYNCH
Unable to resynchronize the security files.

-248: MSFL_ERR_FILES_IN_DIR_CHANGED
The files in the directory have changed (i.e. they are not the same files the directory
was opened with).

-247: MSFL_ERR_UNRECOGNIZED_VERSION
The MetaStock files are not a recognized version.

-225: MSFL_ERR_INVALID_COMP_SYMBOL
The composite symbol is invalid.

-224: MSFL_ERR_INVALID_SYMBOL
The ticker symbol is invalid.

-200: MSFL_ERR_DIFFERENT_DATA_FORMATS
The securities are of different data formats (i.e. the periodicity, interval, or price
fields of the securities do not match).

-199: MSFL_ERR_DUPLICATE_SECURITIES
Attempted to open a directory that contains duplicate securities.

-198: MSFL_ERR_DUPLICATE_SECURITY
Adding the security would duplicate an existing security.

-197: MSFL_ERR_PRIMARY_SEC_NOT_FOUND
The primary security of the composite cannot be found.

-196: MSFL_ERR_SECONDARY_SEC_NOT_FOUND
The secondary security of the composite cannot be found.

-195: MSFL_ERR_SECURITY_HAS_COMPOSITES
Security cannot be deleted because there are one or more composites that depend
on the security.

-194: MSFL_ERR_SECURITY_HAS_NO_DATA
There is no price data for the security.

-193: MSFL_ERR_SECURITY_IS_A_COMPOSITE
Security is a composite.

-192: MSFL_ERR_SECURITY_NOT_COMPOSITE
Security is not a composite.

-191: MSFL_ERR_SECURITY_NOT_FOUND
The security was not found in the directory.

-190: MSFL_ERR_TOO_MANY_SECURITIES
The maximum number of securities per directory has already been reached; adding
additional securities is not possible.

-189: MSFL_ERR_TOO_MANY_COMPOSITES
The maximum number of composites per directory has already been reached.

-188: MSFL_ERR_SECURITIES_ARE_THE_SAME
The securities are the same security. Attempted to merge the security with itself.

-175: MSFL_ERR_INVALID_DATE
The date is invalid.

-174: MSFL_ERR_INVALID_TIME
The time is invalid.

-173: MSFL_ERR_INVALID_INTERVAL
The interval is invalid.

MetaStock® MetaStock File Library (MSFL) • 135

-172: MSFL_ERR_INVALID_PERIODICITY
The periodicity is invalid.

-171: MSFL_ERR_INVALID_OPERATOR
The composite operator is invalid.

-170: MSFL_ERR_INVALID_FIELD_ORDER
The data fields used are not in the same order as documented on page 80.

-169: MSFL_ERR_INVALID_RECORDS
The record numbers are not within a valid range for the operation.

-168: MSFL_ERR_INVALID_DISPLAY_UNITS
The display units are outside the valid range.

-167: MSFL_ERR_INVALID_SECURITY_HANDLE
The security handle is not valid.

-150: MSFL_ERR_ADDING_WOULD_OVERFLOW
Inserting or adding records would exceed the maximum number of records that can
be stored.

-149: MSFL_ERR_DATA_FILE_IS_FULL
The price data file is full.

-148: MSFL_ERR_DATA_RECORD_NOT_FOUND
A matching price record was not found for the date/time.

-147: MSFL_ERR_DATA_NOT_SORTED
The price data is not in date/time sort order.

-146: MSFL_ERR_DATE_AFTER_LAST_REC
The date/time requested is after the date/time of the last price record.

-145: MSFL_ERR_DATE_BEFORE_FIRST_REC
The date/time requested is before the date/time of the first price record.

-144: MSFL_ERR_RECORD_IS_A_DUPLICATE
The record duplicates an existing record.

-143: MSFL_ERR_RECORD_OUT_OF_RANGE
The record number is out of range.

-142: MSFL_ERR_RECORD_NOT_FOUND
The security record was not found – most likely an invalid security handle.

-125: MSFL_ERR_BUFFER_NOT_ATTACHED
A composite buffer was not attached to the locked composite.

-124: MSFL_ERR_INVALID_FUNC_PARMS
One or more of the function parameters are invalid.

-123: MSFL_ERR_UNKNOWN_FIELDS_REQ
The number of data fields used is below the minimum or above the maximum.

-100: MSFL_ERR_INVALID_FUNCTION_CALL
The MSFL DLL is not initialized correctly to perform the request function call.
Refer to the “Initialization” section (page 87) for details on initializing the
MSFL DLL.

0: MSFL_NO_ERR
Operation completed successfully.

136 • MetaStock File Library (MSFL) MetaStock®

Message Codes
The following is list of the possible message codes that can be returned from some
MSFL functions. The message codes are positive return codes; whereas the error codes
are negative return codes. Thus, if an MSFL function is successful the error will be
equal to or greater than MSFL_NO_ERR.

0: MSFL_NO_MSG
No message.

1: MSFL_MSG_NOT_A_MetaStock_DIR
Not a MetaStock data directory.

2: MSFL_MSG_CREATED_DIR
Created directory.

3: MSFL_MSG_BUILT_MetaStock_DIR
Created empty MetaStock files in the directory.

4: MSFL_MSG_CREATED_N_BUILT_DIR
Created directory and empty MetaStock files.

5: MSFL_MSG_FIRST_SECURITY_IN_DIR
This is the first security in the directory.

6: MSFL_MSG_LAST_SECURITY_IN_DIR
This is the last security in the directory.

25: MSFL_MSG_NOT_AN_EXACT_MATCH
The record found was not an exact match.

50: MSFL_MSG_OVERWROTE_RECORDS
Overwrote existing records.

51: MSFL_MSG_LESS_RECORDS_DEL
Fewer records were deleted than requested.

52: MSFL_MSG_LESS_RECORDS_READ
Fewer records were read than requested.

53: MSFL_MSG_MORE_RECORDS_IN_RANGE
There are more records within the specified date range.

MetaStock® MetaStock File Library (MSFL) • 137

Change Record
The following section lists (in reverse version order) a short description of all changes
made in earlier versions of the MSFL and the MSFL Developer’s Kit.

Changes in Version 9.0
The 9.0 version of the MSFL has only minor changes.
• The PowerBasic sample app for the MSFL and MSX uses the latest version

(i.e., version 7.03).

Changes in Version 8.0
• The maximum number of securities per directory

(i.e. MSFL_MAX_NUM_OF_SECURITIES) was increased from 2,000 to 6,000.
• A few minor problems were fixed.

Changes in Version 7.2
• The performance was increased for many operations.
• The following functions were added:

• MSFL1_FormatDate (page 94)
• MSFL1_FormatTime (page 95)
• MSFL1_GetDayMonthYear (page 98)
• MSFL1_GetHourMinTicks (page 104)
• MSFL1_MakeMSFLDate (page 117)
• MSFL1_MakeMSFLTime (page 118)
• MSFL1_ParseDateString (page 120)
• MSFL1_ParseTimeString (page 121)

• A PowerBASIC sample was added.
• A C console sample was added.
• Project/make files are provided for the Visual C++ 6.0, Borland C++ Builder 4, and

gcc 2.95.2 compilers.
• A few minor problems were fixed.

Changes in Version 7.0
• A Borland C++ Builder sample was added.
• A few minor problems were fixed.

Changes in Version 6.51
• The allowed date range was expanded from the 1900’s to include the 1800’s and up to

31 December 2200. The new valid date range is from 1 January 1800 to 31 December
2200.

• The tick count for all times was increased from two digits to three digits. See the
Formats section (page 79) for details on the new time format.

• The maximum number of price records per security
(i.e. MSFL_MAX_DATA_RECORDS) was increased from 32,766 to 65,500.

• The maximum number of price records per read/write
(i.e. MSFL_MAX_READ_WRITE_RECORDS) was increased from 32,766 to
65,500.

• A new flag (i.e. MSFL_DIR_ALLOW_MULTI_OPEN) was added to the
“MSFL1_OpenDirectory” function allowing a folder to be opened more than once.
See MSFL1_OpenDirectory (page 119) for details.

• The Visual Basic types and Delphi records were changed to match the documentation
as well as the C/C++ structures.

138 • MetaStock File Library (MSFL) MetaStock®

Changes in Version 6.5
• The maximum number of securities per directory

(i.e. MSFL_MAX_NUM_OF_SECURITIES) was increased from 255 to 2,000.
• The maximum length of a security name (i.e. MSFL_MAX_NAME_LENGTH) was

increased from 16 to 45 characters.
• The maximum number of price records per read/write

(i.e. MSFL_MAX_READ_WRITE_RECORDS) was increased from 1,927
to 32,766.

• Universal naming convention (UNC) and long file names support was added.
• The library was converted from a C library to a 32-bit DLL to allow access via Visual

Basic, Delphi, and other development environments.
• Security handles replaced data requests and extended symbols.
• String error messages were added.
• Structure types where changed for 32-bit.
• A total size member was added to many of the structures.
• The following functions were added:

• MSFL1_GetDirNumberFromHandle (page 100)
• MSFL1_GetErrorMessage (page 102)
• MSFL1_GetSecurityHandle (page 111)
• MSFL1_GetSecurityID (page 112)
• MSFL2_GetSecurityHandles (page 125)

MetaStock® MetaStock File Library (MSFL) • 139

MSFL Index

A
Application development

C/C++ 75
Delphi 76
PowerBASIC 76
Visual Basic 76

C
CD-ROM support 79
Composite 78

primary security 78
record numbers 78
secondary security 78

D
data field mnemonics 80, 84
Data Types

in MSFL 81
Date Time structure 81
Dates 79
Directory

closing 87
number 87
opening 87

DOP files 79
Duplicate

securities 120
duplicate securities 88

E
Error

codes 88, 131
handling 88

F
Field combinations 80
File

reserved names 79
types 79

function levels in MSFL 77
Functions

MSFL1_CloseDirectory 92
MSFL1_FindDataDate 92
MSFL1_FindDataRec 93
MSFL1_FormatDate 94
MSFL1_FormatTime 95
MSFL1_GetCurrentDataPos 96
MSFL1_GetDataPath 97
MSFL1_GetDataRecordCount 97
MSFL1_GetDayMonthYear 98

MSFL1_GetDirectoryNumber 99
MSFL1_GetDirectoryStatus 100
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetErrorMessage 102
MSFL1_GetFirstSecurityInfo 103
MSFL1_GetHourMinTicks 104
MSFL1_GetLastFailedLockInfo 87, 105
MSFL1_GetLastFailedOpenDirInfo 106
MSFL1_GetLastSecurityInfo 106
MSFL1_GetMSFLState 107
MSFL1_GetNextSecurityInfo 108
MSFL1_GetPrevSecurityInfo 109
MSFL1_GetRecordCountForDateRange 110
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecurityID 112
MSFL1_GetSecurityInfo 113
MSFL1_GetSecurityLockedStatus 114
MSFL1_Initialize 115
MSFL1_LockSecurity 116
MSFL1_MakeMSFLDate 117
MSFL1_MakeMSFLTime 118
MSFL1_OpenDirectory 119
MSFL1_ParseDateString 120
MSFL1_ParseTimeString 121
MSFL1_ReadDataRec 122
MSFL1_SeekBeginData 123
MSFL1_SeekEndData 123
MSFL1_Shutdown 87, 124
MSFL1_UnlockSecurity 124
MSFL2_GetSecurityHandles 125
MSFL2_ReadBackMultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

H
HSECURITY 81, 112

I
Initialize 87, 116

key 87

L
Library key 87
Lock types 87

full 78, 87
prevent write 78, 87
write 78, 87

Locking
composite 87
directory 78
security 78, 87

lTime 81

140 • MetaStock File Library (MSFL) MetaStock®

M
Message codes 88, 136
MSFL data types 81
MSFL function levels 77
MSFL functions

listed by name 89
listed by type 90

MSFL notations 81
MSFL_DISPLAY_UNITS_DECIMAL 83
MSFL_DLL_INTERFACE_VERSION 116
MSFL_ERR_MSFL_CORRUPT 88
MSFL_ERR_NON_MSFL_USER_IN_DIR 106
MSFL_LOCK_FULL_LOCK 87
MSFL_LOCK_PREV_WRITE_LOCK 87
MSFL_LOCK_WRITE_LOCK 87
MSFL_MAX_APP_NAME_LENGTH 116
MSFL_MAX_DISPLAY_UNITS 83
MSFL_MAX_INTERVAL 83
MSFL_MAX_NAME_LENGTH 83
MSFL_MAX_READ_WRITE_RECORDS 129
MSFL_MAX_SYMBOL_LENGTH 80, 83
MSFL_MAX_USER_NAME_LENGTH 116
MSFL_MIN_DISPLAY_UNITS 83
MSFL_MIN_INTERVAL 83
MSFL_MSG_NOT_A_METASTOCK_DIR 120
MSFL_NO_ERR 88
MSFL_VALID_OPERATORS 83
MSFL_VALID_PERIODICITIES 83
MSFL1_GetErrorMessage 102
MSFL1_Initialize, described 115
MSFLDirectoryStatus_struct 101

defined 101
MSFLSecurityIdentifier_struct 112

defined 112
Multi-user 78

N
notations used by the MSFL 81

P
Price data 80

field combinations 80
mnemonics 80

Price record structure 84
Primary security 78
psLastDate 130

R
Removable media 77

Return codes. See Error codes.

S
Secondary security 78
Securities

composite 78
duplicate 88, 120

Security handle 81
Security identifier structure 112
Security information structure 82
Shutdown 87, 124
Structures

date time 81
price record 84
security information 82

Symbol 80

T
Technical support 77
Times 79

V
variable notation 81

W
wDataAvailable 80, 84, 85

MetaStock® Index • 141

Index

Symbols
~MSXIMPORTDLLS~ 16

A
Advise Callbacks, DDE 19
Advise Requests, DDE 19
Application development

C/C++ 75
Delphi 76
PowerBASIC 76
samples 3
Visual Basic 76

Application, DDE 17, 18
Argument range tests 53
Ask, DDE Item 18
Asksize, DDE Item 18

B
Bid, DDE Item 18
Bidsize, DDE Item 18
Borland C++ 5.0

Creating an MSX DLL 43
Debugging an MSX DLL 46

Borland C++ Builder 4.0
Creating an MSX DLL 41
Debugging an MSX DLL 46

Borland Delphi Pascal
Creating an MSX DLL 43
Debugging an MSX DLL 46

C
C

Creating an MSX DLL 40, 41, 43
Debugging an MSX DLL 45, 46
Sample DLL Program 63

Calculation Functions 30
Calculation Structures 35

MSXDataInfoRec 35
MSXDataRec 36
MSXDateTime 35

CD-ROM support 79
CF_TEXT 18, 20
Change, DDE Item 18
closing EqDdeSrv with active conversations 19

Cold-link 17, 19
Command line switches in EqCustUI 12
compatibility of Formula Organizer 14
compilers supported 2
Composite 78

primary security 78
record numbers 78
secondary security 78

Connections, DDE 19
Copyright information 13, 15
custom strings, and partial matches 34
Custom toolbar 5

D
Data

Data Array 56
Price Data 58
Sample 48
Types 31

data array
Argument range 53
tests

Max/Min 52
Special Case 52

data field mnemonics 80, 84
Data Requests, DDE 19
Data Server 17
Data Types 31

Dates 31
in MSFL 81
Strings 31
Times 31

Date Time structure 81
Date, DDE Item 18
Dates 79
DDE Advise Callbacks 19
DDE Advise Requests 19
DDE Application 17, 18
DDE Connections 19
DDE Data Requests 19
DDE Item 17

Ask 18
Asksize 18
Bid 18
Bidsize 18

142 • Index MetaStock®

Change 18
Date 18
High 18
Last 18
Low 18
Open 18
Openint 18
Prevclose 18
Time 18
Totalvol 18
Tradevol 18
Ydtotalvol 18

DDE Server 17
DDE Service 17
DDE System Requests 19
DDE System Topic 19, 20

Formats 20
Status 20
SysItems 20
TopicItemList 20

DDE Topic 17, 18
Directory

closing 87
number 87
opening 87

distributing your MSX DLL 60
DOP files 79
Duplicate

securities 120
duplicate securities 88

E
EqCustUI 5

C/C++ example 6
locking MetaStock files 5

EqCustUI utility 5
EqDatSrv 17
EqDatSrv Updates 19
EqDatSrv.exe 17
EqDdeSrv, closing with active conversations 19
EqDdeSrv.exe 17
Equis Data Server 17
Equis Dynamic Data Exchange Server 17
Error

codes 88, 131
codes in EqCustUI 12
handling 88

Excel 17
DDE Example for 20

Export
DLLs 13
formula-based tools 13
templates 13

External Function DLL folder 16
ExtFml 26, 32, 34

F
Field combinations 80
File

reserved names 79
types 79

Folder
~MSXIMPORTDLLS~ 16
External Function DLLs 16

Formats, DDE System Topic 20
Formorg.exe, detecting multiple versions 16
Formula organizer 13

exporting 14
Formula Organizer compatibility 14
FOSetup.exe 15, 16
Function Argument Structures 38

MSXCustomArgsArray 39
MSXDataInfoRecArgsArray 38
MSXNumericArgsArray 39
MSXResultRec 39
MSXStringArgsArray 39

function levels in MSFL 77
Functions

MSFL1_CloseDirectory 92
MSFL1_FindDataDate 92
MSFL1_FindDataRec 93
MSFL1_FormatDate 94
MSFL1_FormatTime 95
MSFL1_GetCurrentDataPos 96
MSFL1_GetDataPath 97
MSFL1_GetDataRecordCount 97
MSFL1_GetDayMonthYear 98
MSFL1_GetDirectoryNumber 99
MSFL1_GetDirectoryStatus 100
MSFL1_GetDirNumberFromHandle 100
MSFL1_GetErrorMessage 102
MSFL1_GetFirstSecurityInfo 103
MSFL1_GetHourMinTicks 104
MSFL1_GetLastFailedLockInfo 87, 105
MSFL1_GetLastFailedOpenDirInfo 106
MSFL1_GetLastSecurityInfo 106
MSFL1_GetMSFLState 107
MSFL1_GetNextSecurityInfo 108
MSFL1_GetPrevSecurityInfo 109
MSFL1_GetRecordCountForDateRange 110
MSFL1_GetSecurityCount 111
MSFL1_GetSecurityHandle 111
MSFL1_GetSecurityID 112
MSFL1_GetSecurityInfo 113
MSFL1_GetSecurityLockedStatus 114
MSFL1_Initialize 115
MSFL1_LockSecurity 116
MSFL1_MakeMSFLDate 117
MSFL1_MakeMSFLTime 118

MetaStock® Index • 143

MSFL1_OpenDirectory 119
MSFL1_ParseDateString 120
MSFL1_ParseTimeString 121
MSFL1_ReadDataRec 122
MSFL1_SeekBeginData 123
MSFL1_SeekEndData 123
MSFL1_Shutdown 87, 124
MSFL1_UnlockSecurity 124
MSFL2_GetSecurityHandles 125
MSFL2_ReadBackMultipleRecs 126
MSFL2_ReadDataRec 127
MSFL2_ReadMultipleRecs 128
MSFL2_ReadMultipleRecsByDates 129

H
Help 26
Help menu in MetaStock 5
High, DDE Item 18
Hot-link 17, 19
HSECURITY 81, 112

I
iFirstValid 30, 35

defined 35
iFirstValid setting 58
iLastValid 30, 35

defined 35
iLastValid setting 58
iLastValue indexes 30
Import

DLLs 13
formula-based tools 13
templates 13

Initialization Functions 27
MSXInfo 27
MSXNthArg 28
MSXNthCustomString 29
MSXNthFunction 28

Initialization Structures 32
MSXDLLDef 32
MSXFuncArgDef 33
MSXFuncCustomString 34
MSXFuncDef 32

Initialize 87, 116
key 87

initialize 22
Installation

files 3
setup 2

Installation file
creating 13, 15
installing 16
password 16
using 16

Installing third party add-ons 13
Item, DDE 17

L
Last, DDE Item 18
Library key 87
Lock types 87

full 78, 87
prevent write 78, 87
write 78, 87

locked MetaStock files 5
Locking

composite 87
directory 78
security 78, 87

Low, DDE Item 18
lTime 35, 81

M
Max/Min data array tests 52
Menu.AddItem 8
Menu.AddPopupItem 10
Menu.DeleteItem 9
Menu.DeletePopupItem 11
Message codes 88, 136
MetaStock

Custom toolbar 5
Help menu 5
loading DLLs 16
Tools menu 5

MetaStock External Function (MSX) defined 25
MetaStock files

locked 5
Microsoft Excel 17

DDE Example 20
Microsoft Visual C++

Creating an MSX DLL 40
Debugging an MSX DLL 45

MSFL data types 81
MSFL function levels 77
MSFL functions

listed by name 89
listed by type 90

MSFL notations 81
MSFL, using in an MSX DLL 60
MSFL_DISPLAY_UNITS_DECIMAL 83
MSFL_DLL_INTERFACE_VERSION 116
MSFL_ERR_MSFL_CORRUPT 88
MSFL_ERR_NON_MSFL_USER_IN_DIR 106
MSFL_LOCK_FULL_LOCK 87

144 • Index MetaStock®

MSFL_LOCK_PREV_WRITE_LOCK 87
MSFL_LOCK_WRITE_LOCK 87
MSFL_MAX_APP_NAME_LENGTH 116
MSFL_MAX_DISPLAY_UNITS 83
MSFL_MAX_INTERVAL 83
MSFL_MAX_NAME_LENGTH 83
MSFL_MAX_READ_WRITE_RECORDS 129
MSFL_MAX_SYMBOL_LENGTH 80, 83
MSFL_MAX_USER_NAME_LENGTH 116
MSFL_MIN_DISPLAY_UNITS 83
MSFL_MIN_INTERVAL 83
MSFL_MSG_NOT_A_METASTOCK_DIR 120
MSFL_NO_ERR 88
MSFL_VALID_OPERATORS 83
MSFL_VALID_PERIODICITIES 83
MSFL1_GetErrorMessage 102
MSFL1_Initialize, described 115
MSFLDirectoryStatus_struct 101

defined 101
MSFLSecurityIdentifier_struct 112

defined 112
MSX DLL, distributing 60
MSX_ERROR 39
MSX_MAXARGS 33, 38
MSX_MAXSTRING 32
MSX_MAXSTRING, defined 31
MSX_VERSION 32
MSXCustom 34
MSXCustomArgsArray structure 39
MSXDataInfoRec 36
MSXDataInfoRec structure 35
MSXDataInfoRecArgsArray structure 38
MSXDataRec 35
MSXDataRec structure 58

described 36
MSXDateTime 35, 36
MSXDLLDef structure 27
MSXFuncArgDef data structure 29
MSXFuncCustomString data structure 29
MSXFuncDef data structure 28
MSXNthCustomString 34
MSXNumeric arguments 38
MSXNumericArgsArray argument array 38
MSXNumericArgsArray structure 39
MSXResultRec structure 39
MSXStringArgsArray structure 39
MSXStruc.bas 32

MSXStruc.pas 32
Multi-user 78

N
notations used by the MSFL 81

O
Open, DDE Item 18
Openint, DDE Item 18

P
partial match on custom strings 34
Password

formulas 15
installation file 16

PowerBASIC
Creating an MSX DLL 44
Debugging an MSX DLL 47
Sample DLL Program 71

Prevclose, DDE Item 18
Price data 80

field combinations 80
mnemonics 80

Price record structure 84
Primary security 78
Programming Considerations

UI Restrictions 59
psLastDate 130

R
Registry 18
Removable media 77
Return codes. See Error codes.

S
Sample

applications 3
data 3

sClose data array 58
Secondary security 78
Securities

composite 78
duplicate 88, 120

Security handle 81
Security identifier structure 112
Security information structure 82
Service, DDE 17
Setup key 2

MetaStock® Index • 145

Shutdown 87, 124
sInd structure 36
Snapshot 17
Special Case data array tests 52
Status, DDE System Topic 20
string format in DDE Server 18
strings, and partial matches 34
Structures

date time 81
price record 84
security information 82

supported compilers 2
Symbol 80
SysItems, DDE System Topic 20
System Requests, DDE 19
System Requirements 2
System Topic, DDE 19, 20

T
Tech Notes

Using MSFL in an MSX DLL 60
Technical support 4, 26, 77
Templates

exporting 13
importing 13

Testing
MSXTest 48
Stress Testing 52
Testing your DLL with MetaStock 55

Time, DDE Item 18
Times 79
Toolbar.Add 7
Toolbar.Delete 8
Tools menu in MetaStock 5
Topic, DDE 17, 18
TopicItemList, DDE System Topic 20
Totalvol, DDE Item 18
Tradevol, DDE Item 18
typographic conventions 2

U
User interface 5

V
Variable Notation 31
variable notation 81
Visual Basic 25

W
wDataAvailable 80, 84, 85
Win32 43
Win32 DLL 25

Y
Ydtotalvol, DDE Item 18

	Introduction
	Overview
	Typography Conventions
	System Requirements
	Setup
	Supported Compilers
	Installed Files
	Getting Help

	Modifying the MetaStock User Interface
	Introduction
	Using the EqCustUI
	Commands
	Command Line Switches
	Errors

	Formula Organizer Enhancements
	Introduction
	Using the Formula Organizer to Export
	Using the Self-extracting Installation File

	DDE Data Interface
	Overview
	Background
	Implementation

	Interface
	Running EqDdeSrv.exe
	System Topic

	Examples
	Microsoft Excel Example.
	Simple C Example

	Suggested Resources

	MetaStock External Functions (MSX)
	Introduction
	MSX DLL Capabilities
	Getting Assistance

	Overview
	Function Prototype Section
	Initialization Functions
	Calculation Functions

	Data Types
	Formats
	Variable Notation
	Initialization Structures

	Calculation Structures
	Function Argument structures
	Examples

	Creating an MSX DLL
	Microsoft Visual C++ 4.x, 5.0, and 6.0
	Borland C++ Builder 4.0
	Borland C++ 5.0
	Borland Delphi 3.0, 4.0, and 5.0
	PowerBASIC/DLL 6.0
	Naming your DLL and Calculation Functions

	Debugging Your MSX DLL
	General Approach
	Microsoft Visual C++ 4.x, 5.0, and 6.0
	Borland C++ Builder 4.0
	Borland C++ 5.0
	Borland Delphi 3.0, 4.0, and 5.0
	PowerBASIC/DLL 6.0

	Testing Your DLL With MSXTest
	Stress Testing Your DLL Functions
	Automating MSXTest From Your IDE

	Testing Your DLL With MetaStock
	Programming Guidelines
	Data Storage and Calculations
	Things to Remember
	User Interface Restrictions

	Tech Note 1 - Using MSFL in an MSX DLL
	MSX Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	P
	S
	T
	V
	W

	Sample DLL Programs
	“C” Example
	Delphi Pascal Example
	PowerBASIC/DLL Example
	References

	MetaStock File Library (MSFL)
	Introduction
	What’s New

	Application Integration
	Visual Basic
	Delphi
	PowerBASIC

	Getting Help
	Overview
	Securities
	Price Data
	Composites
	Multi-user Support
	Reserved File Names
	CD-ROM Support

	Data Types
	Formats
	Types
	Variable Notation
	Structures

	Using the Library
	Outline
	Initialization
	Directory Opening
	Security Locking
	Data Assumptions and Requirements
	Error Handling

	Functions
	Return Values
	Listed By Name
	Listed By Type
	Reference

	Messages and Errors
	Error Codes
	Message Codes

	Change Record
	MSFL Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

